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Managementsamenvatting

Meetcampagne op basis van clustering en nieuwe analysemethode toont aanwezigheid
Zeer Zorgwekkende Stoffen in drinkwaterbronnen, toxiciteitsmodellen ontwikkeld

Auteur(s) B.A. Wols, R.P.J. Hoondert, P.S. Bauerlein

Zeer zorgwekkende stoffen (ZZS) vormen een risico voor mens en milieu. Grondige kennis van de chemische
eigenschappen, emissieroutes, toxiciteit, gedrag in de ondergrond en verwijderbaarheid tijdens de
drinkwaterproductie van deze stoffen is daarom nodig. Om hierin meer inzicht te krijgen, zijn de ZZS geclusterd op
basis van chemische eigenschappen. Bovendien is een LC-MS analysemethode ontwikkeld voor 36 van deze ZZS op
basis. Uit een meetcampagne waarin deze methode is toegepast, blijkt dat meer dan de helft van deze 36 7ZS
voorkomt in drinkwaterbronnen, voornamelijk in oppervlaktewater. Om het risico van ZZS beter te kunnen
beoordelen zijn toxiciteitsmodellen ontwikkeld voor ZZS en enekele niet-ZZS stoffen. Deze zijn toegevoegd aan de
webtool AquaPriori, waarmee een inschatting gemaakt kan worden van het gedrag van een stof in de ondergrond
en in de zuivering.

Gemeten concentraties van een aantal stoffen in opperviaktewater
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Belang: zeer zorgwekkende stoffen

Zeer zorgwekkende stoffen (ZZS) zijn stoffen die
gevaarlijk kunnen zijn voor mens en milieu. De
watersector krijgt steeds vaker te maken met ZZS.
Om adequaat te kunnen reageren, is kennis en
informatie noodzakelijk over de chemische
eigenschappen van deze stoffen, emissieroutes,
(humane) toxiciteit, aanwezigheid in
drinkwaterbronnen en verwijderbaarheid tijdens de
drinkwaterproductie.

Aanpak: clusteren en meten van zeer
zorgwekkende stoffen; toxiciteit modelleren

De clustering van ZZS is uitgevoerd door stoffen te
groeperen op basis van chemische eigenschappen en
structuur. Verschillende stoffenlijsten, zoals de ZZS
en potentiéle ZZS-lijst van het RIVM, zijn gebruikt als
basis voor deze clustering. Vervolgens werd voor elk
cluster een specifieke stof gekozen om als
vertegenwoordiger van het cluster op te nemen in de
methode voor chemische doelstofanalyse. Op deze
manier kan een brede range aan ZZS geanalyseerd
worden in een enkele doelstofanalysemethode. Bij
de clustering zijn ruim 900 stoffen verdeeld over 51
clusters. Er is uiteindelijk een directe injectie UHPLC-
MS/MS analysemethode ontwikkeld voor 36 van die
stoffen.

Op basis van toxicologische gegevens uit de ToxCast
database zijn voorspellingsmodellen gemaakt voor
de toxiciteit van ZZS, zowel aan de hand van
functionele groepen als op basis van fysisch-
chemische eigenschappen van stoffen zijn Random
Forest en multivariate regressiemodellen ontwikkeld.

Resultaten: ruim de helft gemeten ZZS in
opperviaktewaterbronnen; toxiciteitsmodellen

Zeer Zorgwekkende Stoffen (deel 1) — clustering, bemonstering en toxiciteit

Op diverse locaties bij Nederlandse en Vlaamse
drinkwaterbedrijven zijn monsters genomen en
geanalyseerd op de geclusterde ZZS stoffen. Uit deze
meetcampagne blijkt dat ruim de helft van deze 36
775 voorkomt in de bronnen van drinkwater (in
oppervlaktewater vaker en meer dan in grondwater).
Het grootste gedeelte is niet teruggevonden in
drinkwater Alleen zes verbindingen zijn aangetoond
in concentraties nagenoeg altijd onder de 0.1 pg/L.

De ontwikkelde Random Forest en multivariate
regressiemodellen worden gebruikt om
toxiciteitsvoorspellingen te doen voor de complete
lijst van (potentiéle) ZZS (900 stoffen) en niet-ZZS
(duizenden stoffen).

Toepassing: inschatting gedrag stoffen

De resultaten van dit onderzoek dragen bij aan het
begrip van de aanwezigheid, het gedrag van ZZS in de
ondergrond, zuivering en toxiciteit. Deze informatie
is verwerkt in de webtool AquaPriori. Daarmee kan
een gebruiker een inschatting maken van de
verwijdering in de zuivering en/of ondergrond, en
toxiciteit van een stof.

Rapport

Dit onderzoek is beschreven in het rapport Zeer

Zorgwekkende Stoffen (deel 1) — clustering,

bemonstering en toxiciteit (BTO 2024.010). Lees

meer over ZZS in de BTO rapporten:

e Zeer zorgwekkende stoffen (deel 2) — zuivering,
BTO 2024.011.

e Zeer zorgwekkende stoffen (deel 3) — literature
mining, BTO 2024.012.

e Verslag van veldmetingen en historische
meetgegevens over afbraak van organische
microverontreinigingen in grondwater,
BT02024.013.
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1 Inleiding

Zeer zorgwekkende stoffen (ZZS) zijn stoffen die gevaarlijk voor mens en milieu omdat ze bijvoorbeeld mogelijk
kankerverwekkend of zich in de voedselketen ophopen (zeer persistent, zeer bioaccumulatief, persistent,
bioaccumulatief en toxisch), zie RIVM (z.d.). Daarmee voldoen ZZS aan de Europese criteria (artikel 57 van REACH)
en kunnen ze worden opgenomen in de lijst met autorisatie-plichtige stoffen (bijlage XIV van (European Comission,
2006). Het overheidsbeleid richt zich op het voorkomen en/of beperken van ZZS in de leefomgeving door aanpak
van ZZS emissies bij bedrijven (Ministerie van Infrastructuur en Waterstaat (z.d.)). De sector wordt meer en meer
geconfronteerd met deze stoffen en nieuwe emissieroutes (Timmer en Bannink, 2023). Denk hierbij aan PFAS,
drugsafval, medicijnresten, etc. Dit vraagt om gedegen kennis en informatie over het voorkomen en het gedrag van
stoffen, emissieroutes, impact op de bronnen en verwijderbaarheid gedurende de productie van drinkwater.

In de RIVM-lijst zijn ca. 1600 ZZS en 300 potentiéle ZZS (pZZS) opgenomen. Dit zijn stoffen die via het milieu (lucht,
water of bodem), voedsel, werkplek of producten (zoals huishoudchemicalién) in contact kunnen komen met mensen
en ecosystemen (RIVM, z.d.). Deze verbindingen zijn in de EU verplichte gevaarsindeling, etikettering en verpakking
(CLP-classificatie) van stoffen gelabeld als kankerverwekkend (mutageen, toxisch voor de reproductie klasse 1A/1B).
Een belangrijke vraag hierbij is welke ZZS relevant zijn voor drinkwaterproductie. Daarvoor zijn de volgende aspecten
van belang: in welke mate komen deze stoffen voor in de waterbronnen, wat is het gedrag van deze stoffen in de
ondergrond en zuivering en wat is de aard van de toxiciteit van deze stoffen?

De molecuulstructuur bepaalt de eigenschappen van stoffen. Een eerste stap in de omgang met het grote aantal ZZS
is het toepassen van clustering van de verschillende chemicalién. Door het clusteren van stoffen uit de RIVM-lijst,
inclusief (p)ZZS en referentiestoffen, kan worden geanalyseerd hoe deze chemisch gerelateerd zijn. Dit houdt in dat
we onderzoeken of ze gelijkaardig zijn en hoe hun verhouding is tot de referentiestoffen. Daardoor kan ook meer
inzicht worden gekregen in welke eigenschappen van een stof een (p) ZZS maken. (p)ZZS en referentiestoffen kunnen
op basis van eigenschappen van het molecuul geclusterd worden. Uit ieder cluster kan dan vervolgens een stof
worden gekozen die als ZZS-modelstoffen kunnen dienen in een meetcampagne. Het RIVM heeft een zoeksysteem
voor ZZS?!, waarbij een willekeurige stof ingevoerd kan worden en waar vervolgens op basis van molecuulstructuur
de meest gelijkende ZZS gevonden kan worden. Dit kan als een selectiemethode gebruikt worden om te kijken of een
bepaalde stof lijkt op een ZZS en daarmee mogelijk vergelijkbare toxiciteitprofielen heeft. In de clustering van ZZS
beschreven in dit rapport wordt gebruik gemaakt van vergelijkbare methoden als het RIVM zoeksysteem om
molecuulstructuren te beschrijven (fingerprints) en om deze molecuulstructuren met elkaar te vergelijken (similarity
index). Dit is beschreven in Hoofdstuk 2. De aanpak die in dit rapport beschreven is, richt zich op individuele ZZS (ook
binnen de clusters). Een alternatieve aanpak die wel onderzocht wordt, maar niet in dit onderzoek, is om te kijken
naar mengsels. In Bijlage Ill is in meer detail beschreven hoe de aanpak van mengsels in een beleidscontext wordt
onderzocht door het RIVM.

Het voorkomen van de stoffen in de waterbronnen en het gedrag in de ondergrond en zuivering kan onderzocht
worden aan de hand van meetcampagnes. Diverse oppervlaktewateren worden gemonitord (rijkswateren door RWS,
meetpunten drinkwaterbedrijven door RIWA Osté et al., 2022) op allerlei stoffen. Zo zijn tientallen ZZS gevonden met
relevante exposure en risk-scores in de meetcampagnes van RWS, RIWA-Rijn en FOTO-NL (Osté et al., 2022), zoals
bijvoorbeeld 1,4-dioxane en vinylchloride. Om een beeld te krijgen van het voorkomen van een brede range aan ZZS
is een meetcampagne uitgevoerd op basis van de clustering. Hierin zijn ZZS gemeten in de bronnen (zowel

1 https://rvszoeksysteem.rivm.nl/ZzsSimilarityTool
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oppervlaktewater als grondwater), in de ondergrond (tijdens bodempassage), en tijdens en na de zuivering. Dit is
beschreven in Hoofdstuk 3.

Dit rapport is uitgevoerd in het kader van het BTO project ‘Zeer Zorgwekkende Stoffen’. Dit is een overkoepelend
thematisch BTO project van de thema’s Bronnen & Omgeving, Chemische Veiligheid, Zuivering en Hydroinformatics.
Er verschijnen een aantal rapporten over onderzoek naar Zeer Zorgwekkende Stoffen. Dit rapport is het eerste
rapport in dit ZZS-project en beschrijft het gedeelte van het project over de clustering van de stoffen, meetcampagne
en toxiciteit. De waterzuiveringsaspecten van ZZS worden beschreven in BTO 2024.011. Daarnaast wordt een
onderdeel over literatuur mining beschreven in BTO 2024.012. En er verschijnt een deelrapport over het gedrag van
Z7S in de ondergrond (BTO 2024.013).
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2 Clusteren van stoffen

2.1 Inleiding

De zeer zorgwekkende stoffen (ZZS)-lijst omvat een groot aantal stoffen en stofgroepen (>1500). Deze lijst is te lang
en de stoffen zijn chemisch/fysisch te verschillend om allemaal in een doelstofanalysemethode op te nemen. De
Z75-lijst is samengesteld voor een breed publiek, met name voor mens en milieu die via verschillende wegen in
aanraking komen met deze stoffen, zoals door het milieu (lucht, water en bodem), voedsel, de werkomgeving, en
huishoudchemicalién. Dus niet alle ZZS zullen in het water voorkomen. Naast de lijst met ZZS zijn er ook
stoffenlijsten gebruikt die wel specifiek van belang zijn voor de watersector, zoals bijvoorbeeld de persistente,
mobiele en toxische (PMT) stoffen. Vanwege het grote aantal relevante stoffen zijn clustertechnieken toegepast om
stoffen die op elkaar lijken te groeperen. Op deze manier kunnen groepen van stoffen gedefinieerd worden
waarvan vergelijkbaar gedrag valt te verwachten in ondergrond, zuivering of qua toxiciteit. Voor elk cluster is
vervolgens één specifieke stof gekozen om te gebruiken in een doelstofanalysemethode. Dit is gedaan om een
meetprogramma te ontwikkelen dat zo representatief mogelijk is voor de gehele lijst van stoffen.

2.2 Stoffenlijsten

De lijst van in dit BTO onderzoek onderzochte ZZS stoffen is gebaseerd op een bestaande lijst van het RIVM (RIVM,
z.d.,?). Stoffen op deze lijst worden als zeer zorgwekkend aangemerkt als ze voldoen aan één of meer van
onderstaande criteria: Kankerverwekkend (C), Mutageen (M), Reprotoxisch (R), PBT, vPvB, soortgelijke zorg
(bijvoorbeeld hormoonverstorende stoffen).

Naast de ZZS lijst van het RIVM zijn een aantal andere stoffenlijsten gebruikt:

e Lijst met potentieel Zeer Zorgwekkende Stoffen (pZZS) van RIVM, te vinden op de website van het RIVM
(RIVM, z.d.,%);

e Lijst met persistente, mobiele en toxische (PMT) volgens NGI en UBA (Deens onderzoek), Holmberg et al.
(2021);

e Lijst met persistente, mobiele en toxische (PMT) gebruikt door Vitens (met gemeten concentraties)
(persoonlijke communicatie);

e Lijst met stoffen gedetecteerd tijdens screening van waterbronnen door de HPLC-UV (intern rapport);

e Lijst met Gadolinium (Gd) gebaseerde rontgen (MRI) contrastmiddelen (ref). Dit is een groep stoffen waar
weinig over bekend is en die steeds meer worden toegepast (Kools et al., 2013; RIWA-Rijn, 2022).

Op deze stoffenlijsten zijn een aantal bewerkingen uitgevoerd om tot een algehele lijst met stoffen te komen:

e Stofgroepen zijn verwijderd;

2 https://rvs.rivm.nl/onderwerpen/zeer-zorgwekkende-stoffen

3 https://rvs.rivm.nl/onderwerpen/Zeer-Zorgwekkende-Stoffen/Potentiele-ZZS
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De stoffen die niet in werelds grootste database van stoffen PubChem* voorkomen worden verwijderd
omdat zonder deze database chemische descriptoren en/of fingerprints niet kunnen worden bepaald (zie
Tabel 1);

De dubbelingen uit verschillende lijsten worden verwijderd.

Anorganische verbindingen zijn verwijderd (van de verbindingen die in PubChem staan zijn dit 135
anorganische verbindingen in de ZZS-lijst en 15 anorganische verbindingen in de pZZsS lijst);

Stoffen met een logP groter dan 8 zijn verwijderd, omdat deze zeer slecht oplosbaar zijn in water en dus
niet relevant zijn voor waterbronnen. Deze grens is vrij ruim genomen om niet per ongeluk (bijvoorbeeld
door onnauwkeurigheden in logP waarden) waterrelevante stoffen te verwijderen.

Tabel 1 geeft een overzicht van het aantal stoffen per lijst en hoeveel stoffen er overgebleven zijn na de diverse

bewerkingen. In totaal zijn er 1079 stoffen.

Tabel 1 Overzicht van de verschillende lijsten en aantal stoffen na diverse bewerkingen

778 pZZS PMT Gd-MRI HPLC_UV Vitens

(UBA/NGI) contrast PMT
# stoffen/stofgroepen = 1566 261 157 9 153 121
# stoffen in pubchem | 795 | 217 | 156 9 149 121
# stoffen na verwijdering dubbelingen = 741 216 | 156 9 149 121
# stoffen na verwijdering anorganische = 611 | 200 | 156 9 149 120

stoffen
# stoffen (cumulatief) 611 811 @ 932 941 1074 1135
# stoffen na verwijdering log P>8 1079

2.3 Aanpak clustering

Voor de analyse worden de volgende stappen uitgevoerd:

Identificatie van stof op basis van CAS/stofnaam. Nadat de stof is opgezocht in PubChem wordt de
isomerische smiles codering (isomeric_smiles) uit PubChem gehaald;
Bepalen van fingerprints, dit is een code die een stof krijgt waarbij iedere bit in de code aangeeft of een
bepaalde substructuur wel of niet aanwezig is in het molecuul. De volgende fingerprints zijn beschouwd
(het aantal bits geeft het aantal substructuren aan):
0 CACTVS fingerprint uit pubchem (881 bits, opgehaald met behulp van pubchempy®);
0 MACCS fingerprint (167 bits, met behulp van rdkit®);
0 Morgan fingerprint (2048 bits, met behulp van rdkit), deze is uiteindelijk niet meegenomen,
omdat die niet onderscheidend genoeg was;
Kiezen van descriptoren, dit zijn numerieke waarden van een bepaalde eigenschap van het molecuul die
op basis van de structuurformule eenvoudig af te leiden zijn met chemische informaticatechnieken. De
volgende descriptoren zijn beschouwd:
0 Aande hand van de fingerprint: iedere bit wordt als aparte descriptor beschouwd in de data-
analyse. Zowel de CACTUS als de MACCS fingerprints zijn gebruikt;
0 Uit pubchem: charge, tpsa, rotatable_bond_count, molecular_weight, heavy_atom_count,
h_bond_acceptor_count, h_bond_donor_count;

4 https://pubchem.ncbi.nim.nih.gov/

5 https://pubchempy.readthedocs.io/en/latest/api.html

6 https://www.rdkit.org/docs/GettingStartedInPython.html
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0 Via rdkit: xlogp. Via rdkit kunnen er ook nog veel meer descriptoren berekend worden, deze zijn
echter niet voor alle stoffen bekend en daarom niet gebruikt;

e Verwijderen van missende data. Voordat de clustering gedaan kan worden moet eerst alle ontbrekende
descriptordata worden verwijderd. Het selecteren van descriptoren, welke numerieke waarden van
specifieke moleculaire eigenschappen vertegenwoordigen, wordt vereenvoudigd door chemische
informaticatechnieken. Deze waarden kunnen direct worden afgeleid uit de structuurformule van het
molecuul;

e Clustering, dit is gebeurd via K-means clustering (met de python module scikit-learn) op basis van
bovengenoemde descriptoren. Hier kan van te voren ingesteld worden hoeveel clusters er gemaakt
moeten worden. Het clusteringsalgoritme is toegepast voor verschillende aantallen clusters, variérend van
2 t/m 150 clusters, om het aantal clusters voor deze stoffenlijsten te optimaliseren;

e Evaluatie van clustering om te bepalen hoe goed de stoffen passen binnen een cluster en hoeveel clusters
er nodig zijn om de lijsten te representeren. Hierbij is van twee parameters gebruik gemaakt:

0 Silhouette score is een maat hoe goed een stof past binnen een cluster, tussen de -1 en 1. Groter
dan 0 betekent dat de stof beter bij zijn eigen cluster past dan bij andere clusters, kleiner dan 0
betekent het omgekeerde.

0 Similarity index. Hier worden de (MACCS) fingerprints van twee moleculen vergeleken en wordt
een similarity index berekend tussen 0 en 1 (0 ongelijk en 1 gelijk). Er wordt gebruik gemaakt van
de Tanimoto similarity index (Bajusz et al., 2015). In een cluster wordt voor elke stof berekend
wat de gemiddelde similarity is t.0.v. de andere stoffen in het cluster. RIVM maakt in de ZZS tool
(Wassenaar et al., 2022) ook gebruik van similarity indices om stoffen te vergelijken.

Nadat de clusters gemaakt zijn, wordt aan de hand van de evaluatie het optimale aantal clusters gekozen.
Vervolgens zijn zeer vluchtige stoffen (met een kookpunt < 20 °C) en zeer slecht oplosbare stoffen (met een
oplosbaarheid <0,1 mg/L) verwijderd, omdat deze niet in drinkwaterbronnen worden verwacht’. Tevens zijn
clusters met heel weinig stoffen (1 of 2) verwijderd om het aantal stoffen in de doelstofanalysemethode te
verminderen. Voor deze stoffen is tevens onderzocht hoe goed ze in een ander cluster passen (Paragraaf 2.6).

Vervolgens wordt er per cluster een stof geselecteerd voor in de doelstofanalysemethode. Dit gebeurt door de
stoffen in ieder cluster te rangschikken op (in volgorde):

1. Beschikbare analysetechnieken
2. Reeds gemeten concentraties bij de Rijn en Maas (RIWA), HWL en Vitens (PMT lijst)

3. Afkomst van de stof uit een specifieke PMT lijst heeft hier de hoogste prioriteit, omdat die het meest
relevant zijn voor drinkwaterbedrijven.

4. Eigenschappen: vluchtigheid (modelberekening kookpunt in EPI suite, USEPA, 2012) en oplosbaarheid
(modelberekening EPI suite, USEPA, 2012). Hoogste rangschikking gebeurt voor hogere oplosbaarheid en
lage vluchtigheid (hoog kookpunt).

5. Verwacht gebruik (Reach database — tonnages per jaar, beschikbaar voor 1/3 van de stoffen)

7 Hierbij is geen rekening gehouden met ionisatie van stoffen (bijvoorbeeld stoffen die als neutraal molecuul slecht oplosbaar zijn maar na ionisatie wel

oplossen)
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2.4 Resultaten

24.1 Aantal clusters

De ‘similarity’ scores van iedere stof in een cluster is weergegeven in Figuur 2-1 voor verschillende aantallen
clusters. In Figuur 2-2 is de gemiddelde ‘similarity” en ‘silhouette’ score als functie van het aantal clusters
weergegeven. Deze scores lopen op bij een toenemend aantal clusters. Voor de silhouette score is tevens het
aantal clusters weergegeven waarin stoffen zitten met een score lager dan 0 (dit betekent dat deze stoffen niet
goed binnen dat cluster passen). Vanaf ongeveer 50 clusters blijft dit aandeel nagenoeg constant (bij een
toenemend aantal clusters). Daarnaast neemt het aantal clusters met heel weinig stoffen erin (minder dan 5
stoffen) logischerwijs toe bij een toenemend aantal clusters. Op basis van deze vergelijking van het aantal clusters is
gekozen voor 70 clusters, omdat bij een groter aantal clusters de toename van similarity en silhoutte relatief klein
is.

Figuur 2-1 Evaluatie van de ‘similarity’ scores van iedere stof in een clusters voor diverse aantal clusters (de subplots geven van links naar rechts
een oplopend aantal clusters weer). Stoffen in hetzelfde cluster hebben dezelfde kleur.
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Figuur 2-2 Gemiddelde evaluatie score van de stoffen in een cluster bij verschillende aantallen clusters

13
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Figuur 2-3 Voorbeeld van stoffen in cluster 60 t/m 69. Clusters 63, 66 en 68 zijn later verwijderd omdat ze te klein waren.

2.4.2 Selectie stoffen in ieder cluster

Uit elk cluster dient één stof gekozen te worden voor toepassing in een analysemethode. Voordat dit gedaan
wordt, zijn een aantal nabewerkingen uitgevoerd om het aantal clusters te verkleinen (zie Paragraaf 2.3). Het
verwijderen van hele vluchtige stoffen reduceert het totaal aantal stoffen tot 919 in 69 clusters. Daarna resulteert
het verwijderen van heel slecht oplosbare stoffen het aantal stoffen tot 726 in 63 clusters. Tenslotte zijn clusters
met 2 stoffen of minder niet meegenomen voor de analysemethode, wat resulteert in 710 stoffen in 51 clusters (de
afgevallen stoffen zijn later toegevoegd aan andere clusters, zie Paragraaf 2.6).

De stoffen in de 51 overgebleven clusters zijn gerangschikt volgens de criteria gegeven in Paragraaf 2.3. De
geaggregeerde waarde per cluster van een aantal van deze criteria zijn weergegeven in Tabel 2. De hoogste
geprioriteerde stof (op basis van de criteria in Paragraaf 2.3) per cluster is weergegeven in

Tabel 3. Hierbij is door het KWR laboratorium een inschatting gemaakt in hoeverre deze stoffen te analyseren zijn
met een methode. Veel stoffen zijn te analyseren met behulp van een C18-kolom, daarom is gekozen om een
methode met juist deze type kolom te ontwikkelen.
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Tabel 2 Overzicht van 51 clusters

# stoffen in Max. Gemiddelde #stoffen in

Gem. Gemiddelde cluster met

Cluster # Nt Reach Oplosbaarheid Kookp concentratie concentratie beschikbare

stoffen aangetroffen gebruik unt (K) NORMAN
(mg/L) in NL {ug/L) KWR
/gemeten (ton) (u/L)

methoden
0 10 1 10k-100k 1.14E+05 479 0.109 0
1 11 5 6.36E+03 428 0.123 0.113 3
2 29 12 1M-10M 1.27E+05 143 0.287 0
3 8 3 8.96E+01 245 0.008 0.010 3
4 12 0 1k-10k 8.13E+02 291 0
5 11 7 4.55E+00 370 0.032 0.016 0
6 6 1 2.09E+03 503 0.116 0.116 0
8 6 4 3.20E+03 451 0.008 0.007 0
9 47 23 1.38E+04 392 0.083 0.061 16
10 4 2 4.53E+02 420 0.155 0.089 2
11 3 1 4.18E+03 584 0.084 0.043 1
12 4 3 3.63E+03 526 0.118 0.095 2
13 10 2 1k-10k 3.26E+03 174 0
14 5 5 3.02E+03 313 0.215 0.149 5
16 5 4 5.39E+02 368 0.066 0.024 2
17 13 11 7.80E+04 332 0.034 0.188 7
18 3 3 1.63E-01 340 0.000 0
19 4 3 5.50E+01 847 0.302 0.199 3
20 51 10 7.96E+03 337 0.121 0.080 5
21 27 2 1.56E+04 353 0
24 6 1 1.26E+05 273 0.455 0.157 1
25 11 5 0.1-1k 1.83E+05 364 0.052 0.050 3
26 21 3 2.21E+02 358 0.068 0.068 0
28 11 6 2.76E+01 447 0.129 0.071 2
29 18 7 2.21E+03 369 0.078 0.030 4
30 21 4 0.1-1k 1.26E+05 239 0.003 0.019 3
34 5 0 5.35E+00 443 0
35 9 5 1.09E+04 159 0.010 0.151 3
37 40 18 2.40E+04 250 0.114 0.070 5
39 3 0 1.12E+05 249 0
40 25 9 1.20E+04 348 1.028 0.839 3
41 13 3 1-10 6.32E+05 307 0.030 1.272 3
42 3 1 5.43E+01 494 0
43 8 0 3.34E+04 357 0
44 11 8 6.69E+02 358 0.706 0.319 2
46 39 6 1k-10k 3.66E+05 195 0.197 0.416 2
47 3 0 10k-100k 1.08E+04 64 0
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48

51
52

55

56
57
59
60
61
62
64
65
67
69

Tabel 3 Geselecteerde stoffen per cluster en mogelijkheden met betrekking tot analysemethoden (C18, Viuchtigen of GC-MS).

cluster

w0 0o L s~ W Nk O

WwwN NN NNNN R R RRRRRRR
OB O Vo & B O LN O & WN KL O

44 9 1M-10M 1.77E+05
14 12 2.68E+02
8 5 4.08E+00
61 9 10k-100k 3.84E+05
14 4 7.82E+04
8 7 4.43E+03
3 0 1.00E+06
4 2 3.44E+04
7 2 6.12E+02
4 1 9.94E-01
5 4 1.06E+02
4 0 1.83E+05
11 9 1.09E+04
7 0 1.75E+02

Stofnaam (hoogst geprioriteerd per cluster)

trichloro(fluoro)methane
Furosemide

chloroform
1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonic acid
cycloheximide
phenanthrene
flumioxazin

Climbazole
2-hydroxybenzothiazool
2-methylbenzothiazool
Nicosulfuron
pentoxyfylline
1,2-dibroomethaan
benzotriazole
2,4-dinitrofenol
terbutylazine

endrin

iopamidol

metoprolol
2,4,5-trimethylaniline
carbendazim

triethyl phosphate
parathion-methyl
Prothioconazool
thiacloprid

phoxim
2-(benzotriazol-2-yl)-4-methylphenol (Drometrizole)

pentadecafluorooctanoic acid

165

359
305

287

410
347
480
250
400
361
461
251
300
439

1.079

0.124

0.058

0.066
0.039

0.123
0.036

0.011

0.083

C18

Zeer Zorgwekkende Stoffen (deel 1) — clustering, bemonstering en toxiciteit

0.746

0.038
0.004

0.196

0.110
0.024

0.505
0.022
0.000

0.008

0.047

AV

=

o oo O M O O | O wun

GC-MS
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37 methamphetamine X
39 N-[bis[(butan-2-ylideneamino)oxy]-methylsilylJoxybutan-2-imine

40 methadon X
41 CGA 354743 X
42 warfarin X
43 3-(oxiran-2-ylmethoxy)-N,N-bis(oxiran-2-ylmethyl)aniline

44 benzoylecgonine (metaboliet cocaine) X
46 tetraglyme X
47 dimethoxy(dimethyl)silane

48 tetrahydrofuran X
51 metobromuron X
52 1,2,4-trichlorobenzene X
55 bromacil X
56 saccharine X
57 MDMA X
59 [bis[6-[bis(phosphonomethyl)aminolhexyl]lamino]lmethylphosphonicacid

60 metazachloor X
61 Salicylzuur X
62 beta-endosulfan

64 oxazepam X
65 hexanedihydrazide

67 4-chloor-2-methylfenoxyazijnzuur (MCPA) X
69 oxybenzone X

2.5 Definitieve stoffenlijst meetmethode

De stoffen en bijbehorende rapportagegrenzen voor de ontwikkelde methode zijn weergegeven in Tabel 4. De
stoffen prothioconazool en iopamidol zijn afgevallen, omdat deze niet teruggevonden werden in de ontwikkelde
analysemethode. Voor deze methode worden de volgende twee kolommen gebruikt: een analytische kolom
(Phenomenex Luna Omega Polar C18 2.1x100 1,6 um) en een Guardkolom (Phenomenex securityGuard ultra
cartridges C18). De stoffen zijn gedetecteerd met een SCIEX Triple Quad 6500+. Details van de methode zijn te
vinden in bijlage IV.
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Tabel 4: Definitieve lijst met stoffen in de C18 methode en bij behorende rapportagegrens (ng/L) in vier verschillende matrices. DW =
Drinkwater, OW = Oppervlaktewater, GW = Grondwater. Vanwege matrixeffecten of blanco achtergrond kunnen voor de roodgekleurde
verbindingen geen prestatiekenmerken worden vastgesteld.

Component Cas nummer Rapportagegrens (ng/L)
Ultrapuur DW ow GW
water
Furosemide 54-31-9 25 25 25 25
1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonic acid 375-73-5 50 50 50 100
cycloheximide 66-81-9 25 50 50 50
Climbazole 38083-17-9 5 5 5 5
2-hydroxybenzothiazool 934-34-9 5 10 10 10
2-methylthiobenzothiazool 615-22-5 50 50 50 100
Nicosulfuron 111991-09-4 5 5 5 5
Pentoxyfylline 6493-05-6 5 5 5 5
Benzotriazole 95-14-7 10 25 25 25
2,4-dinitrofenol 51-28-5 10 10 10 10
Terbutylazine 5915-41-3 5 5 5 5
Metoprolol 37350-58-6 5 5 5 5
2,4,5-trimethylaniline 137-17-7 5 5 5 5
Carbendazim 10605-21-7 5 5 5 5
Triethyl phosphate 78-40-0 10 50 50 50
Thiacloprid 111988-49-9 5 5 5 5
Phoxim 14816-18-3 5 10 10 10
Drometrizole 2440-22-4 50 50 50 50
Metolachloor ESA (CGA 354743) 171118-09-5 25 25 25 25
Warfarin 81-81-2 5 5 5 5
Tetraglyme 143-24-8 5 5 5 5
Metobromuron 3060-89-7 10 25 25 25
Bromacil 314-40-9 10 10 10 10
Saccharine 81-07-2 50 50 50 50
Metazachlor 67129-08-2 5 5 5 5
4-chloor-2-methylfenoxyazijnzuur (MCPA) 94-74-6 25 25 25 25
Oxybenzone 604-75-1 10 10 10 10
Methamphetamine 537-46-2 5 5 5 5
Benzoylecgonine 519-09-5 5 5 5 5
MDMA 42542-10-9 5 5 5 5
Oxazepam 604-75-1 5 5 5 5
Methadon 76-99-3 5 5 5 5
Flumioxazin 103361-09-7
Parathion-methyl 298-0-0
PFOA 335-67-1

Salicylzuur 69-72-7


https://www.sigmaaldrich.com/NL/en/search/2440-22-4?focus=products&page=1&perPage=30&sort=relevance&term=2440-22-4&type=cas_number
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2.6 Herstructurering clusters

Een aantal stoffen en clusters zijn om diverse redenen afgevallen. Een aanvullende bewerking is daarom uitgevoerd
om de afgevallen stoffen of de stoffen in afgevallen clusters mee te nemen in de overgebleven clusters. Dit is
gedaan door voor iedere stof in een afgevallen cluster te berekenen wat de ‘similarity’ is met de stoffen in de
overgebleven clusters, en vervolgens is deze stof toegekend aan het cluster waarvan de gemiddelde ‘similarity’
score het hoogst is. Figuur 2-4 laat een voorbeeld zien van een aantal clusters waaraan stoffen op deze manier zijn

toegevoegd.

Figuur 2-4 Voorbeeld van stoffen (cluster 59-69) uit weggevallen clusters (blauw gearceerd) die aan de andere clusters zijn toegevoegd.
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3 Meetprogramma

3.1 Analysemethode

De meetmethode zoals beschreven in Paragraaf 2.5 en in bijlage IV is toegepast om de stoffen op de diverse locaties te
meten.

3.2 Locaties monstername

Bij alle 11 drinkwaterbedrijven zijn op verschillende momenten in de drinkwaterproductie monsters genomen en
geanalyseerd. Er zijn vijf verschillende categorieén: oppervlaktewater (OW), grondwater (GW), zuivering GW, zuivering
OW en drinkwater. In Tabel 1 staan hoeveel monsters per bedrijf in elke categorie zijn gemeten.

Table 1: Aantallen monsters per type water. OW = oppervilaktewater, GW = grondwater, Zuivering = monsters genomen tijdens het zuiveringsproces.

Drinkwaterbedrijf ow ZuiveringOW = GW Zuivering GW Drinkwater
Waternet 2 9 0 2 2
PWN 3 2 0 0 2
Evides 4 1 1 0 1
Vitens 1 (oeverfiltraat) 6 3 7 2
Oasen 3 0 4 0 1
Dunea 4 1 3 0 0
De Watergroep 1 0 1 0 2
Brabant Water 1 0 14 2 3
WML 2 6 4 4 1
WBG 1 3 1 2 2
WMD 0 0 2 2 2
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3.3 Resultaten meetprogramma

Hieronder zijn de meetgegevens van de verschillende monsters weergegeven. De data is zowel per type water als per
drinkwaterbedrijf weergegeven. Van alle 36 gemeten verbindingen zijn 19 boven hun rapportagegrens aangetoond in
de monsters (Tabel 5). In de figuren hieronder worden enkel de 19 gedetecteerde stoffen getoond.

Tabel 5: Tabel met verbindingen die boven de rapportagegrens zijn aangetoond.

Component Cas nummer Aangetoond
Furosemide 54-31-9
1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonic acid 375-73-5
cycloheximide 66-81-9
Climbazole 38083-17-9 X
2-hydroxybenzothiazool 934-34-9 X
2-methylthiobenzothiazool 615-22-5 X
Nicosulfuron 111991-09-4 X
Pentoxyfylline 6493-05-6
Benzotriazole 95-14-7 X
2,4-dinitrofenol 51-28-5 X
Terbutylazine 5915-41-3 X
Metoprolol 37350-58-6 X
2,4,5-trimethylaniline 137-17-7
Carbendazim 10605-21-7 X
Triethyl phosphate 78-40-0 X
Thiacloprid 111988-49-9
Phoxim 14816-18-3
Drometrizole 2440-22-4
Metolachloor ESA (CGA 354743) 171118-09-5 X
Warfarin 81-81-2
Tetraglyme 143-24-8 X
Metobromuron 3060-89-7 X
Bromacil 314-40-9
Saccharine 81-07-2 X
Metazachlor 67129-08-2 X
4-chloor-2-methylfenoxyazijnzuur (MCPA) 94-74-6 X
Oxybenzone 604-75-1
Methamphetamine 537-46-2
Benzoylecgonine 519-09-5 X
MDMA 42542-10-9 X
Oxazepam 604-75-1 X

Methadon 76-99-3


https://www.sigmaaldrich.com/NL/en/search/2440-22-4?focus=products&page=1&perPage=30&sort=relevance&term=2440-22-4&type=cas_number
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Flumioxazin 103361-09-7
Parathion-methyl 298-0-0
PFOA 335-67-1
Salicylzuur 69-72-7
3.3.1 Meetgegevens per watermatrix

Voor oppervlaktewater, grondwater en drinkwater zijn boxplots gemaakt en gemiddelde concentraties berekend
(Figuur 6, Figuur 7, Error! Reference source not found.).

Oppervlaktewater

In totaal werden in het oppervlaktewater 19 verbindingen boven de rapportagegrens aangetoond. Twee verbindingen,
namelijk benzotrizaool en metolachloor vallen op vanwege je incidentele hoge concentraties ten opzichte van de
andere verbindingen ( > 600 ng/L) en de hogere gemiddelde concentraties. Benzotriazool kent een concentratie van ca.
207 ng/L en metolachloor ESA van ca. 110 ng/L. De andere concentratie liggen gemiddeld onder de 50 ng/L.

Figuur 5: Boxplot van de aangetoonde verbindingen in alle opperviaktewaterenmonsters.

Grondwater
In grondwater werden in totaal 12 stoffen boven hun rapportagegrens aangetoond. Benzotriazool en metolachloor ESA
vallen op door hun incidenteel hoge concentraties, respectievelijk ongeveer 400 en 700 ng/L, en hun gemiddelde
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concentraties. De gemiddelde concentraties liggen rond 26 en 46 ng/L (wat voornamelijk wordt bepaald door een
aantal hoge pieken).

Figuur 6: Boxplot van de aangetoonde verbindingen in alle grondwatermonsters.

Drinkwater

In de drinkwatermonsters worden 6 stoffen boven de rapportagegrens aangetoond. De meest opvallende zijn
benzotriazool en metolachloor ESA met concentratie soms boven 400 en 600 ng/L. De gemiddelde concentraties van
deze verbindingen zijn ca. 4 en 30 ng/L. Deze concentraties zijn overigens onder de drinkwaternorm van 1000 ng/| (1
ug/L) voor metalochloor ESA (humaan toxicologisch niet-relevante metaboliet van een pesticide), en onder de
indicatieve drinkwaterrichtwaarde van 700 ng/L voor benzotriazool.
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Figuur 7: Boxplot van de aangetoonde verbindingen in alle drinkwatermonsters.

24
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4 Toxiciteitsvoorspellingen

4.1 Inleiding

Het is van groot belang om risico's verbonden aan ZZS-emissies in te kunnen schatten. Het is echter niet haalbaar of
wenselijk om toxiciteitsexperimenten uit te voeren voor alle stoffen, vanwege b.v. ethische, financiéle en
tijdsbeperkingen. In vitro-onderzoeken kunnen geschikter zijn dan in vivo-onderzoeken, maar zijn vaak niet haalbaar voor
high-throughput screening (Stucki et al., 2022). In silico-benaderingen kunnen helpen bij het inschatten van de
gezondheidskundige risico’s die aan dergelijke stoffen zijn verbonden (Reus et al., 2022). Deze modellen kunnen gebruikt
worden om snel een uitspraak te kunnen doen over of een stof mogelijk kan worden aangemerkt als ZZS (Moon et al,,
2020; Wassenaar et al., 2021). Een nadeel van deze modellen is echter het ontbreken van geschikte, grote datasets met
toxicologische gegevens die als basis kunnen dienen voor voorspellende modellen (Hemmerich et al., 2020). Met name
voor machine learning-modellen zijn grote hoeveelheden data nodig. Mechanistische modellen hebben vaak minder data
nodig en maken het makkelijker om slechte data te herkennen en te extrapoleren buiten de chemische ruimte van de
bestudeerde stoffen omdat het mechanisme duidelijk is, maar deze zijn vaak onvolledig en beperkt. In het huidige
onderzoek is daarom een grote beschikbare dataset met toxicologische data (ToxCast) geschikt gemaakt als
trainingsdataset in modellen om toxiciteit te voorspellen. Hoewel er recent al eerder modellen zijn ontwikkeld om de
toxiciteit van ZZS te kunnen voorspellen (Moon et al., 2020; Wassenaar et al., 2021), worden hiervoor vaak lijsten van
stoffen gebruikt waarvan bekend is dat deze toxisch zijn (ZZS-lijsten). In deze huidige studie worden de modellen
gebaseerd op een breed scala aan stoffen en wordt de toepasbaarheid van de modellen getest op basis van de clusters
van ZZS zoals deze zijn beschreven in Hoofdstuk 2.

Om de chemische structuur van nieuwe, onbekende stoffen te kunnen correleren aan stofeigenschappen, is een
conventioneel QSAR-model (quantitative structure-activity relationships) gebouwd. Deze is gebaseerd op statistische
regressiemodellen voor moleculaire descriptoren (met name structural alerts en functionele groepen/structurele
fragmenten). Structural alerts zijn structurele patronen binnen moleculen waarvan de aanwezigheid mogelijk verband
houdt met bepaalde nadelige effecten in organen, en worden daarom veel gebruikt als input in QSAR-modellen (Yang et
al., 2020). Het zijn moleculaire fragmenten met een hoge chemische reactiviteit of fragmenten die via bioactivering door
menselijke enzymen kunnen worden omgezet in fragmenten met een hoge chemische reactiviteit (Limban et al., 2018).
Nitrobenzeen, aniline, aziridine, epoxiden, zuurhalogeniden en onverzadigde carbonylen zijn allemaal bekende
voorbeelden van structurele alerts in verband met mutageniteit (Yang et al., 2020). Functionele groepen daarentegen
zijn delen (een deel van een molecuul dat ook in andere moleculen voorkomt) die de karakteristieke fysische, chemische
en biologische eigenschappen van dat molecuul bepalen en niet noodzakelijkerwijs verband houden met toxiciteit (Ertl
et al., 2020). Deze groepen zijn echter beide opgenomen in het QSAR model, omdat de clusters van verbindingen op de
lijst van ZZS onder andere zijn gebaseerd op hun vergelijkbare functionele groepen.

Naast structurele eigenschappen is bekend dat ook fysisch-chemische eigenschappen en partitiecoéfficienten (vaak
afgeleid op basis van chemische structuren) van verbindingen verband houden met (eco)toxiciteit. De correlatie tussen
de hydrofobiciteit van chemicalién - gewoonlijk uitgedrukt als de log van de octanol/water-verdelingscoéfficiént (log
Kow) - en hun toxische potentie is al meer dan veertig jaar geleden vastgesteld (Kénemann, 1981; Lambert et al., 2022;
McCarty et al., 1985). Over het algemeen hebben verbindingen met een hogere log Kow, en dus een hogere
hydrofobiciteit, een hogere toxische potentie vanwege hun neiging tot interactie met en accumulatie in cellen en
weefsels (Verhaar et al., 1992). Dit werd onlangs opnieuw bevestigd met behulp van een uitgebreide database van 617
organische chemicalién met samengestelde en gestandaardiseerde gegevens over acute toxiciteit, waaruit blijkt dat
Kow omgekeerd evenredig is met ecotoxiciteit (Lambert et al., 2022). Hoewel er veel goede software tools bestaan om
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de toxiciteit van stoffen in te schatten op basis van read-across en QSARs (b.v. VEGA, de OECD QSAR Toolbox en Case
Ultra), zijn deze tools niet geschikt om (snel) meerdere voorspellingen te doen van de toxiciteit van stoffen waarvoor
data ontbreken. Om deze reden is gekozen om zelf QSARs op te stellen op basis van fysisch-chemische parameters en
functionele groepen. In BTO-rapport (BTO 2023.060; Are PMOCs less toxic?) werd al eerder aangetoond dat de relatie
tussen fysisch-chemische parameters gerelateerd aan PMOCs (persistente mobiele organische verbindingen; log Ko,
log Kow en biodegradatie) en toxiciteit duidelijk zichtbaar is. De molecuulstructuur van stoffen beinvlioedt de
blootstelling echter op twee manieren:

) hun chemische eigenschappen bepalen de mate van blootstelling: door hun (slechte) oplosbaarheid, het
feit dat ze allerlei biologische structuren (wel of niet) kunnen passeren of (wel of niet) ophopen in
bepaalde weefsels.

)] Daarnaast hebben ze ook een intrinsieke toxiciteit omdat ze een biologisch systeem op een bepaalde
specifieke (receptor) of aspecifieke (oxidatieve stress, ophoping in membranen) manier beinvlioeden,
afhankelijk van het organisme en de omgevingscondities.

Blootstelling en toxiciteit lopen in feit dus door elkaar en de ToxCast database is juist aan de bloostellingskant niet altijd
representatief. In het huidig onderzoek is onderzocht of in silico-technieken gebruikt kunnen worden om
stofeigenschappen (moleculaire functionele groepen en/of structural alerts) direct te koppelen aan de toxiciteit van
(Z2ZS) stoffen.

4.2 Methode

4.2.1 Verzameling van toxiciteitsdata
Om inzicht te verkrijgen in de toxiciteit van (ZZS) stoffen is de complete ToxCast-dataset gedownload, bestaande uit 21
databases met daarin meer dan 3,5 miljoen toxiciteitsgegevens (U.S. EPA, 2015). Wanneer alleen actieve stoffen worden
meegenomen (met een active hit call), blijven er 357.000 datarecords over. In ToxCast wordt de actieve concentratie
waarbij 50% van het effect wordt waargenomen (ACso in uM) berekend met behulp van experimentele concentratie-
responsreeksen voor een breed scala aan in vitro assays en drie modeltypen (zie Figuur 8):

e  (Constant model (CNST): een model met twee parameters met een helling en snijpunt gelijk aan 0 (lineair);

e Hill model (HILL): een model met drie parameters met een S-curve en vioerparameter gelijk aan O.

e  Gain-Loss model (GNLS): een model met vijf parameters.
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Figuur 8: Model fitting (constant, hill en gain-loss model)

Log ACsos voor het best voorspellende model worden automatisch berekend. In ToxCast krijgen concentratie-
responsreeksen alleen een actieve hit-call (en hoge kwaliteitsbeoordeling) wanneer ze aan drie criteria voldoen (Feshuk
etal., 2023):
1. Het Hill-model (de standaard S-curve die wordt gebruikt in dosis-responsrelaties) is het beste model.
2. De bovenkant van de gemodelleerde curve moet boven de efficiéntiedrempel liggen (de
doeltreffendheidsgrenswaarde).
3. Voor ten minste één concentratie moet de mediane respons boven de werkzaamheidsdrempel liggen

Naast de gemodelleerde ACso's van het Hill-model, wordt de ACio (de actieve concentratie waarbij 10% van het effect
wordt waargenomen) ook afgeleid op basis van de modelparameters (d.w.z. de helling en intercept van de curve).
Bovenstaande criteria zijn ook gevolgd in het huidige onderzoek. Na het opschonen op basis van deze criteria bestaat de
resulterende dataset uit 1388 individuele unieke eindpunten uit in vitro assays uit 20 bronnen/laboratoria (Tabel 7;
ToxCast Assay Platform Descriptions 08112017.pdf (epa.gov)), met 235.207 dataregels voor 7566 unieke stoffen
(gebaseerd op CAS-nummer), zowel ZZS als niet-ZZS. Deze eindpunten zijn echter niet specifiek gerelateerd aan ZZS-

eigenschappen en beslaan een breed spectrum. De ZZS-lijst die in de vorige hoofdstukken is gebruikt (zie Hoofdstuk 2.2),
omvat 911 stoffen, waarvan 517 stoffen (57% van de lijst, 45.142 dataregels) zijn opgenomen in de ToxCast-database
voor 1349 unieke in vitro assays.

Tabel 6: Partners van de ontwikkelde in vitro assays die zijn opgenomen in de ToxCast Database (ToxCast Assay Platform Descriptions
08112017.pdf (epa.gov)).

Afkorting in ToxCast

ACEA ACEA BioSciences, Inc.
APR Apredica (Evotec)
ATG Attagene, Inc.

BSK BioSeek

NVS Novascreen

oT Odyssey Thera

TOX21 NCGC

CEETOX CeeTox/OpAns

LTEA Life Technologies / Expression Analysis
CLD CellzDirect



https://www.epa.gov/system/files/documents/2022-12/ToxCast%20Assay%20Platform%20Descriptions%2008112017.pdf
https://www.epa.gov/system/files/documents/2022-12/ToxCast%20Assay%20Platform%20Descriptions%2008112017.pdf
https://www.epa.gov/system/files/documents/2022-12/ToxCast%20Assay%20Platform%20Descriptions%2008112017.pdf
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CCTE Center for Computational Toxicology and Exposure

CCTE-SHAFER Center for Computational Toxicology and Exposure
(Shafer — neurodevelopmental toxicity)

CPHEA-STOKER Center for Public Health and Environmental
Assessment

CCTE-GLTED Great Lakes Toxicology and Ecology Division
Laboratory (GLTED)

UPITT University of Pittsburgh

ERF Eurofins

CCTE-MUNDY Center for Computational Toxicology and Exposure
(lan Mundy)

4.2.2 Combineren van data met functionele groepen en fysisch-chemische descriptoren

Toxiciteitsgegevens (ACso's) uit de complete ToxCast-database (inclusief ZZS) werden gecombineerd met EPI Suite-
gegevens, die informatie bevatten over fysisch-chemische kenmerken en verdelingscoéfficiénten/partitiecoéfficiénten
die worden geassocieerd met bioaccumulatie en mobiliteit (Log Koc en Log Kow). Er is gekozen om deze parameters mee
te nemen als verklarende variabelen in de modelontwikkeling, aangezien zij geassocieerd worden met verhoogde acute
toxiciteit vanwege hun relevantie voor bioconcentratie in membranen (Lambert et al., 2022). De volledige dataset werd
vervolgens opgeschoond voor analyse op basis van meerdere criteria:

1. Aangezien een lage oplosbaarheid en — vaak samenvallende — hoge hydrofobiciteit van een verbinding vaak de
daadwerkelijke blootstelling in een toxiciteitstest beinvloedt (wat doorgaans leidt tot een onderschatting van
het effect ervan) (Groothuis et al., 2015), zijn slecht oplosbare verbindingen (d.w.z. met een oplosbaarheid in
UM onder de corresponderende ACso) verwijderd uit de dataset (Jonker and Van der Heijden, 2007).
Oplosbaarheid (Logio S in M) werd geschat met behulp van het WSKOWWIN v1.42-model. Het inkorten van de
gegevens resulteerde in een dataset van 5.426 chemische stoffen voor 1588 in vitro toxiciteitstesten (162.743
dataregels), waarvan 453 individuele ZZS (23.169 dataregels).

2. Alle in vitro toxiciteitstesteindpunten waarvoor minder dan 50 dataregels (geteste stoffen) beschikbaar zijn,
werden buiten beschouwing gelaten in de verdere analyse om onbevooroordeelde (unbiased) modellering te
garanderen. Deze drempelwaarde van 50 dataregels was gebaseerd op de centrale limietstelling, waarbij
aannames over de populatieverdeling zinloos zijn als de steekproefomvang groter is dan 30, omdat de
steekproefverdeling dan de standaardnormale verdeling benadert (Kwak and Kim, 2017). Aangezien 70% van de
data wordt gebruikt als trainingsdataset en de overige 30% van de dataregels dienst zal doen als testdataset,
moet de totale subset uit minimaal (30/0.7 = 43, afgerond naar 50) dataregels bestaan. Het inkorten van de
gegevens op basis van dit criterium resulteerde in een dataset van 5.101 stoffen (waarvan 444 77S-stoffen —
48,6% van de initiéle CAS-lijst, zie Figuur 20) voor 603 in vitro toxiciteitstesten.
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Figuur 9: Venndiagram met alle stoffen in de ToxCastdatabase (5381 stoffen) en de lijst met ZZS (zie hoofdstuk 2.2)

De resulterende dataset werd gecombineerd met gegevens over functionele groepen (organische functionele groepen —
structurele fragmenten) en structurele alerts (DNA-binding en eiwitbinding) uit de OECD QSAR Toolbox, gebaseerd op
eerdere ervaringen (zie BTO.015 - “Evaluation of QSAR tools in combination with bioassays for transformation products
and emerging substances”). Vervolgens zijn deze gegevens per in vitro toxiciteitstest verder onderverdeeld op basis van
het volgende criterium:

3. Sterk gecorreleerde functionele groepen en structurele alerts (r > 0,97) werden verwijderd uit de dataset om
multicollineariteit® en voorspellingsbias te voorkomen (Naes and Mevik, 2001). Als waarden van paarsgewijze
twee fysisch-chemische descriptoren een hoge correlatie hebben (hoger dan 0,97), werd de variabele met de
grootste gemiddelde absolute correlatie verwijderd. De waarde van 0,97 werd gekozen op basis van een trade-
off tussen het behouden van zoveel mogelijk fysisch-chemische descriptoren en het verwijderen van de vrijwel
vergelijkbare descriptoren. Het verwijderen van teveel verklarende variabelen kan namelijk leiden tot een verlies
van voorspellend vermogen in het model.

De toepassing van deze drie criteria resulteerde in een lijst van 603 toxiciteitstesten (bestaande uit in totaal 139.364
dataregels) die afzonderlijk werden geanalyseerd en die betrekking hebben op 5.101 unieke stoffen (waarvan 444 77S).

4.2.3 Modelbeschrijving

Om toxiciteitsvoorspellingen te kunnen doen voor ZZS en niet-ZZS, maakten we gebruik van twee modeltypen; Random
Forestanalyse en multivarabele lineaire regressieanalyse. De Random Forest-analyse is een algoritme voor supervised
learning dat gebruikmaakt van een ensemble van beslissingsbomen. Deze analyse is in staat is om zowel regressie- als
classificatietaken uit te voeren, waarbij respectievelijk data geclusterd of voorspeld kunnen worden. Het algoritme
selecteert voortdurend willekeurig een subset van fysisch-chemische descriptoren of functionele groepen en verdeelt de
data op basis van deze descriptoren, totdat een volledige boom is ontwikkeld. Deze bomen worden geanalyseerd op
voorspellend vermogen op basis van de fysisch-chemische descriptoren en structurele fragmenten (verklarende
variabele) en toxiciteit (responsvariabele). Het algoritme komt tot de beste verklarende eigenschappen door altijd
prioriteit te geven aan de beslisbomen met de eigenschappen die het beste presteren om toxiciteit te verklaren.

Het randomisatieproces binnen het algoritme vermindert bias en vermindert de variantie tussen en binnen bomen.
Random Forest is, afgezien van het vermogen om nauwkeurige classificaties te bouwen, een goede en niet-parametrische
methode voor het selecteren van chemische features, die voorspellend zijn voor toxiciteit. Om meer inzicht te krijgen in

& Multicollineariteit: er is een sterk lineair verband tussen verklarende variabelen
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de toxiciteit van ZZS, werden Random Forest-analyses uitgevoerd op basis van gegevens over functionele groepen,
structural alerts en drie fysisch-chemische descriptoren van ZZS, waarbij toxicologische eindpunten als responsvariabele
werden genomen.

Een vast aantal van 500 beslissingsbomen werd gebruikt in de Random Forest-analyses en de top 10 structurele alerts
die de meeste variantie in ACso verklaren, werden gerapporteerd en als verklarende variabelen gebruikt in de
meervoudige regressieanalyse. Het verklarend vermogen van variabelen binnen een Random Forest analyse wordt
bepaald door de %IncMSE (increase in mean-squared error van de voorspelde waarden) te berekenen. Dit is de meest
robuuste en informatieve waarde binnen de analyse. Deze waarde wordt per verklarende variabele (j) berekend door:

MSE; — MSE,
o = Mo%0)

%IncMSE = MSE
0

«100% [1]

waarbij MSE staat voor mean squared-error (oftewel gemiddelde kwadratische fout; het gemiddelde kwadratische
verschil tussen de voorspelde waarde en de werkelijke waarde) voor beslisboom j t.o.v. de uitgangssituatie. Aangezien
de %IncMSE in dit geval laat zien in hoeverre het model minder presteert wanneer een desbetreffende variabele niet
wordt meegenomen, betekent een hogere %IncMSE-waarde een beter voorspellende variabele.

Random Forest-analyse vereist niet dat de responsvariabele en/of de voorspellende variabelen normaal verdeeld zijn.
Binaire variabelen (0 / 1), zoals de aan- of afwezigheid van bepaalde functionele groepen en structurele fragmenten, zijn
per definitie niet normaal verdeeld. Een nadeel van elk machine learning-model, inclusief Random Forest, is dat het zo
ingewikkeld is dat het alleen als computermodel kan worden toegepast. De resultaten zijn daarom niet intuitief
gemakkelijk te interpreteren, wat het risico op het niet herkennen van biassed data groot maakt. Bovendien bevat de
Random Forest-output geen kwantitatieve regressiecoéfficiénten en geeft deze analyse daarom geen inzicht in de
omvang of richting van het waargenomen effect. Om deze reden zijn de meest voorspellende verklarende variabelen uit
de Random Forest-analyse gebruikt als input in een lineaire regressieanalyse (QSARs).

De QSAR's voor toxiciteit zijn afgeleid door het volgende conceptuele model toe te passen op de dataset.
y= 2+ x,+ x5+ -+ x, [2]

waarin X1 tot X» de 15 tot en met de n% functionele groep vertegenwoordigen, en y het toxiciteitseindpunt (ACso)
vertegenwoordigt.

Om de modellen zo ongecompliceerd mogelijk te houden, werden geen interacties of kwadratische functies opgenomen
in de QSAR-modelafleiding. Daarna werden de meest invioedrijke voorspellers van activiteit in de assays (ACso)
geidentificeerd door de regressiecoéfficiénten te standaardiseren met behulp van de Relaimpo package in R statistics,
Ver.4.1.1.

42.4 Modelevaluatie

Na het combineren van de experimentele gegevens (zie 4.2.2.) met de functionele groepen, werden subsets gemaakt
van de data per in vitro assay en werd 70% van de data gebruikt in een trainingsdataset en de resterende 30% gebruikt
als testdataset. Dataregels werden hierbij willekeurig geselecteerd. De modellen werden geévalueerd met behulp van de
RZ en de Q2 bij het voorspellen van toxiciteit voor stoffen die zijn weggelaten uit de initiéle dataset (testdataset) (zie
vergelijking 3 en 4):

Ji
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X9’

RZ=1-S-— =
2= (i — )2

3]

waarbij de R? wordt berekend als 1 — de resterende som van de kwadraten (RSS) en de totale som van de kwadraten
(TSS), is y; de waargenomen ACso voor verbinding i, J; is de voorspelde ACso voor verbinding i, en ¥ is het gemiddelde
ACso in de trainingsdataset. De R2-statistieken verklaren de variantie in de responsvariabele, verklaard door de
verklarende variabele(n). Door de jaren heen is er veel discussie geweest over de R>-drempel waarboven een model als
een goed voorspellend model kan worden beschouwd. In dit onderzoek zullen R-waarden van 0,75, 0,50 of 0,25 voor
responsvariabelen worden beschreven als respectievelijk substantieel, matig of zwak, volgens Hair et al. (2013) en
Sarstedt et al. (2021). De voorspellende kracht van het model (voor stoffen in de testdataset) wordt geévalueerd door
de Q? voor de testdataset te berekenen:

_ 2?21(yi - ?ext)z
Z?:1(.Vext - yext)z

Q*=1 [4]

waarbij de Q% wordt berekend als 1 — de resterende som van de kwadraten (RSS) en de totale som van de kwadraten
(TSS), Yext is de waargenomen ACso voor verbinding i, , Jexe is de voorspelde ACso voor verbinding i, en y, . is het
gemiddelde ACso in de testdataset. De Q?-statistiek weerspiegelt de voorspellende relevantie en meet of een model
voorspellende relevantie heeft. Q%-waarden boven nul geven aan dat de experimentele waarden goed zijn voorspeld en

dat het model voorspellende relevantie heeft.

Daarnaast is de sensitivity (sensitiviteit), specificity (specificiteit) en accuracy (nauwkeurigheid) van de modellen berekend
(Formule 5, 6 en 7). De sensitiviteit is het vermogen van de test om toxische stoffen en dus potentiéle ZZS te herkennen
(ware positieven), de specificiteit het vermogen van het model om niet-toxische stoffen te herkennen (ware negatieven)
en de nauwkeurigheid het algemene voorspellend vermogen (ware positieven + ware negatieven). Daarbovenop zijn de
negative predictive value (het aantal ware negatieven ten opzichte van alle negatieve waarden) en positive predictive
value (het aantal ware positieven ten opzichte van alle positieve waarden) gerapporteerd (Formule 8 en 9). Omdat deze
evaluatiecriteria zijn gebaseerd op nominale responsvariabelen (de stof is wel of niet toxisch), zijn de continue ACso-
waarden per individuele in vitro toxiciteitstest omgezet naar toxiciteitsklassen (lage toxiciteit of hoge toxiciteit) op basis
van de distributie van ACso-waarden (per toxiciteitstest), dus of de ACso in de laagste 25% valt (= hoge toxiciteit) of de
hoogste 75% (lage toxiciteit).

o Ware positieven
Sensitiviteit = — ; Py [5]
Ware positieven + Vals negatieven (alle geobserveerde positieven)

Ware negatieven

Specificiteit = [6]

Ware negatieven + Vals positieven (alle geobserveerde negatieven)

Nauwkeurigheid
Ware positieven + Ware negatieven

- [7]

" Ware positieven + Ware negatieven + Vals positieven + Vals negatieven (alle waarden)
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NPV = Ware negatives 8
" Ware negatieven + Vals negatieven (alle voorspelde negatieven) (8]

PPV = Ware positieven 9
"~ Ware positieven + Vals positieven (alle voorspelde positieven) []

4.25 Groeperen van in vitro assays

In vitro toxiciteitstesten werden gegroepeerd op basis van eigenschappen gerelateerd aan het toxicologische
werkingsmechanisme (b.v. beoogde doeltype (intended target family)). Elk datapunt in de ToxCast-database heeft een
unieke set aan annotaties, beschrijvende kenmerken die een bepaald aspect van de gebruikte in vitro toxiciteitstest
beschrijven. De meeste van de 38 annotaties zijn gerelateerd aan ten minste één andere annotatie (Figuur 4). Aangezien
de dataset uit een groot aantal soorten in vitro assays bestaat, werden deze assays geclassificeerd op basis van assay-
type en -kenmerken (d.w.z. doelfamilie (intended target type), technologisch doeltype (technological target type), type
testontwerp (assay design type), signaalrichting (signal direction), en organisme en modeltype gebaseerd op weefsel.

Een target kan verschillende vormen hebben (bijvoorbeeld een gen). De doelfamilie geeft de objectieve vorm weer van
het beoogde target (de representatieve genetische familie of het biologische proces van het target (bijv. celcyclus of
DNA-binding)), terwijl het technologische doeltype de gemeten vorm van het target betreft dat wordt gebruikt in de
experimentele methoden (bijv. embryonale ontwikkeling in zebravis assays) (Phuong et al., 2014). Het type testontwerp
van een toxiciteitstest is gerelateerd aan de technologie die wordt gebruikt om een biologisch of fysisch proces te
vertalen naar een detecteerbaar signaal (bijv. enzymreporter of groeireporter), en de signaalrichting komt overeen met
de verwachte richting van het gedetecteerde signaal in relatie tot de negatieve controle (bijv. toename of afname van
activiteit) (Phuong et al., 2014) (Figuur 20).
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Figuur 10: Assay annotatiestructuur. De 38 verschillende annotaties zijn gegroepeerd in A. assayinformatie, B. technologie-informatie, C: detectie-
informatie, D: functie-informatie, E: ontwerpinformatie, F: doelinformatie en G. analyse-informatie (Phuong et al., 2014).
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4.3 Resultaten en discussie

43.1 ACso-data per cluster

De ZZS stoffen werden op basis van MACCS fingerprints geclusterd (zie Hoofdstuk 2.3). Boxplots met informatie over de
ACso-data per cluster worden in Figuur 22 weergegeven. Dit zijn zowel stoffen die in meerdere assayeindpunten een
duidelijk activiteit vertonen als stoffen die specifiek aanslaan in specifieke assays en dus mogelijk alleen toxisch zijn als
gekeken worden naar bepaalde eindpunten (bijvoorbeeld neurale ontwikkeling). Hier is echter geen onderscheid in
gemaakt. De (ZZS-)stoffen binnen cluster 18 bleken over het algemeen de laagste ACso's — en dus de hoogste toxiciteit -
te hebben (gemiddelde = 2,03 uM, S.E. = 8,08, voor alle soorten in vitro assays). De gegevens binnen dit cluster waren
echter niet normaal verdeeld, wat resulteerde in een mediaanwaarde (12,9 uM) die significant afwijkt van de gemiddelde
waarde. De hoogste ACso's (gemiddelde = 36,1 mM, mediaan = 33,3 uM, S.E. = 8,64), en dus de laagste toxiciteit, zijn
waargenomen voor stoffen in cluster 61. Deze waarden verschillen echter sterk tussen de verschillende typen assays.
Bovendien kan een laag aantal stoffen binnen een cluster de resultaten vertekenen. Cluster 18 bestaat bijvoorbeeld uit
slechts vier stoffen (iopamidol, iopromide, natriumdiatrizoaat en iomeprol, allen radiocontrastmiddelen), terwijl cluster
61 uit viff stoffen bestaat (benzotriazool, 4-methylbenzotriazool, = 5-methyl-1H-benzotriazool, 5,6-
dimethylazimidobenzeen en 5-chloorbenzotriazool, allen corrosieremmers). Uit enkel de ACso data is overigens niet op
te maken of deze stoffen toxischer zijn dan andere stoffen in de dataset, omdat dit sterk afhankelijk is van de verdeling
van de stoffen in de subsets en de distributie van de corresponderende ACso-waarden. Om deze reden is per stof-ACso
combinatie het percentiel van de waarde binnen de ACso-distributie bepaald, uitgaande van normaal verdeelde ACso data
per assayeindpunt. De resulterende boxplots (in Figuur 23) geven vervolgens aan hoe de data binnen het cluster zich
verhoudt tot de ACsos van andere stoffen (van andere clusters, maar ook niet-ZZS). De percentielen van de ZZS zijn over
het algemeen uniform verdeeld (van O tot 1), wat betekent dat ZZS niet in alle gevallen (assayeindpunten) de meest
toxische stoffen zijn.

Aangezien onze Random Forest-analyse een minimale steekproefomvang van 50 gegevensinvoeren vereist, was het niet
mogelijk om deze analyse voor alle clusters afzonderlijk uit te voeren (de meeste clusters bestaan over het algemeen uit
minder dan 50 dataregels (Tabel 8). Een Random Forest-analyse is uitgevoerd op de functionele groepen die het meest
bijdragen aan toxiciteit (Zie Hoofdstuk 4.2.2.), waarbij toxiciteitsgegevens (ACso) voor alle soorten in vitro assays zijn
gecombineerd.

4.3.2 Random forest-analyses

In 26,1% van alle random forest-analyses (475 in vitro assayeindpunten) is organotin geidentificeerd als de belangrijkste
functionele groep voor de voorspelling van de toxiciteit van stoffen (dit is echter slechts gebaseerd op een kleine dataset
van stoffen die daadwerkelijk een organotingroep bevatten), gevolgd door de acetoxygroep (in 8,2% van alle random
forests) en verzadigde carbocycles (8%), waarbij de laatste wordt geidentificeerd als een belangrijke structurele alerts in
verband met mutageniteit (Yang et al., 2020). Slechts vijf stoffen (waar 950 van de 37.169 ACso’s bij horen) bevatten
echter een functionele organotingroep, terwijl slechts twee en drie stoffen respectievelijk een acetoxygroep en een
verzadigde carbocyclusgroep bevatten. Er wordt ook gezien dat 391 van de 517 stoffen meer dan één functionele groep
bevatten (Figuur 23). Dit specifieke kenmerk verklaart de variatie in toxiciteit in iets meer dan 4% van alle random forest
analyses. Dit resultaat is dus helaas erg onzeker en (nog) niet bruikbaar in de risicobeoordeling van stoffen waarvoor
geen gegevens beschikbaar zijn.

Dit geeft ook mogelijk een vertekend beeld van het werkelijk voorspellend vermogen van de Random Forest analyses,
aangezien de samenstelling van in vitro assays waarvoor data beschikbaar zijn in de clusters verschilt tussen de clusters.
De hoogste variatie die wordt verklaard door de random forest analyses, wanneer naar alle in vitro assays samen wordt
gekeken, is bijna 9%, voor cluster 69. Dit cluster bestaat volledig uit (oxy)benzo(pheno)nen, UV-filters.

Tabel 7: Aantal in vitro testeindpunten waarvoor data beschikbaar zijn per cluster.
# # # #
Clusternummer eindpunten  Clusternummer eindpunten  Clusternummer eindpunten  Clusternummer eindpunten
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0 10 17 13 40 29 61 11
1 13 18 17 41 13 62 9
2 31 19 4 42 5 64 5
3 16 20 64 43 8 65 4
4 18 21 28 44 22 67 18
5 27 24 6 46 40 69 7
6 6 25 12 47 13
8 8 26 27 48 55
9 49 28 13 51 14

10 4 29 21 52 32

11 4 30 21 55 64

12 5 34 10 56 17

13 15 35 25 57 8

14 5 37 48 59 3

16 5 39 9 60 4

Figuur 11: Boxplots met toxiciteitswaarden (ACso; actieve concentraties waarbij 50% van het geobserveerde effect is waargenomen) voor de clusters
die zijn meegenomen in deze studie(links) en boxplots met percentielen van stoffen binnen de ZZS-clusters t.o.v. alle ACso-waarden binnen
assayeindpunten. De zwarte letters (a,b,c,..) geven significante verschillen tussen clusters aan. Gelijke letters geven aan dat er geen significante
verschillen zijn tussen clusters. De grijze cijfers links geven de grootte van de dataset aan (aantal dataregels per cluster).
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43.3 Lineaire regressieanalysen

Wanneer we kijken naar het voorspellend vermogen van de analyses en de voorspelde ACsgs uitzetten tegen de gemeten
ACsos voor alle stoffen in onze geformatteerde dataset op basis van de criteria beschreven in 4.2.1. (meer dan 5000
stoffen; Figuur 23), zien we dat 75,5% van de voorspelde datapunten binnen een factor 5 vallen van de geobserveerde
ACses. Van de datapunten is 2,1% overgefit (0-u=0), 12,9% van de datapunten onderschat (u/5 > (i), en 11,5% van de
datapunten overschat (u*5 < 5). Dit impliceert dat de modellen (afgeleid per individueel assayeindpunt) een relatief
goede indicatie geven van de toxiciteit van een stof, maar niet erg nauwkeurig zijn. Van de ZZS stoffen binnen deze
dataset vallen 73,5% van de voorspelde datapunten binnen een factor 5 van de waargenomen ACso. Van de voorspelde
toxiciteitswaarden voor ZZS zijn 2,1% overgefit ((-u=0; de data bevatten te weinig informatie om uitspraak te kunnen
doen over de toxiciteit van stoffen waarvoor niet alle informatie beschikbaar is), 12,9% van de datapunten onderschat
(u/5 > 0), 11,5% van de datapunten overschat (u*5 < 5). Over het algemeen wordt 69,7% van de variatie in de ACso-
waarden in de trainingsdataset verklaard door het lineaire regressiemodel (R?). Wanneer het model wordt toegepast op
de testdataset, wordt echter slechts 18% van de variatie verklaar door het model (Q?). De verklaarde variatie in de
testdataset is echter nog lager (8,3%) wanneer alleen gekeken wordt naar ZZS (Figuur 24). Ook binnen de eerder
gedefinieerde ZZS-clusters bestaan verschillen (Figuur 25; zie Figuur 29a-d in Appendix | voor een overzicht van de
voorspellingen voor de clusters waarvoor meer dan 50 dataregels beschikbaar zijn). In Figuur 26 staat beschreven in
hoeverre de voorspelde ACso-waarden binnen een factor vijf van de waargenomen ACso-waarden liggen (between) en of
de ACso- waarden onderschat of overschat worden ten opzichte van de waargenomen waarden. Cluster 34
(benzotriazolen, o.a. gebruikt als stabilisatoren) blijkt het slechtst voorspelbaar op basis van functionele groepen,
wanneer per in vitro assay gemodelleerd wordt. Voor dit cluster wordt 100% van de dataregels in de trainingsdataset
overschat (de voorspelde waarden liggen meer dan een factor vijf hoger dan de waargenomen waarden). Deze conclusie
wordt echter getrokken op basis van een kleine dataset. De beste voorspellingen voor de trainingsdataset worden gedaan
voor cluster 47 (siloxanen, o.a. gebruikt als bouwstenen voor siliconenrubbers). Voor deze groep vallen 100% van de
voorspelde data binnen een factor vijf van de waargenomen data. Wanneer de modellen worden toegepast op de
testdataset, valt echter slechts 45% van de voorspelde data binnen een factor vijf van de waargenomen data. Hoewel
voor cluster 39 (silicaten) 60% van de voorspelde data in de trainingsdataset binnen een factor vijf van de ware
toxiciteitsdata ligt, valt 100% van de testdataset voor dit cluster binnen een factor vijf van de waargenomen
toxiciteitsdata. Dit wordt mogelijk veroorzaakt door de kleine steekproefgrootte van dit cluster, waardoor slechts één of
twee stoffen binnen dit cluster in de testdataset belanden. Wellicht dat grotere clusters voor betere voorspellingen van
de test dataset zorgen, hoewel het aanpassen van het criterium voor similarity van stoffen er ook voor kan zorgen dat de
stoffen in de testdataset minder overeenkomsten vertonen, resulterend in een lagere voorspelbaarheid van de toxiciteit
van de stof binnen dit cluster. Daarbovenop zorgt het vergroten van de clusters er mogelijk voor dat nieuwe potentiéle
Z7ZS sneller in een bepaald cluster vallen. Eventueel kan bij grotere ZZS-clusters per cluster-eindpuntcombinatie QSARs
afgeleid worden, wat wellicht zorgt voor gerichtere ACso-voorspellingen voor stoffen die mogelijk minder vergelijkbaar
zijn dan binnen de clusters die nu zijn voorgesteld. Gerichte QSARs afleiden voor de ZZS-clusters in deze studie was
immers niet mogelijk vanwege datalimitaties.
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Figuur 12: Voorspelde toxiciteit (ACso in uM) door het meervoudige lineaire regressiemodel versus waargenomen toxiciteit, gebaseerd op functionele
groepen, voor zowel de training- en testdataset, als stoffen die als ZZS staan aangemerkt en stoffen die niet als ZZS staan aangemerkt.
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Figuur 13: Voorspelde toxiciteit (ACso in uM) door het meervoudige lineaire regressiemodel versus waargenomen toxiciteit, gebaseerd op functionele
groepen, voor stoffen die als ZZS staan aangemerkt en stoffen die niet als ZZS staan aangemerkt.

Figuur 14: Voorspelde toxiciteit (ACso in uM) door het meervoudige lineaire regressiemodel versus waargenomen toxiciteit, gebaseerd op functionele
groepen, voor stoffen binnen de clusters zoals eerder beschreven. Zie Figuur 29a-d in Appendix | voor de individuele plots per ZZS-cluster.
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Figuur 15: Voorspellingen van ZZS (percentages van de voorspelde toxiciteitsgegevens die binnen — of buiten — een factor vijf van de ware
toxiciteitsgegevens liggen).

43.4 Sensitiviteit, specificiteit, nauwkeurigheid, NPV en PPV

Naast de regressieanalyses, zijn de stoffen ook geclassificeerd op basis van hun ACso (zie Paragraaf 4.2.4.) en gelabeld als
‘laag’, ‘medium’ en ‘hoog’ toxisch. Ook de voorspelde waarden zijn op basis van de toxiciteitsdistributies beschreven in
Paragraaf 4.2.4 gelabeld. Vervolgens is de sensitiviteit, specificiteit en nauwkeurigheid van de modellen bepaald. De
sensitiviteit van alle individuele modellen (het percentage correct voorspelde “high toxicity”-klassen — ware positieven)
was 65,6%. De specificiteit van de modellen (het percentage correct voorspelde “low toxicity”-klassen —ware negatieven)
was 81,4%. Dit betekent dat over het algemeen de modellen beter zijn in het voorkomen van vals negatieven, dan van
vals positieven, wat weer impliceert dat de modellen conservatief zijn. De negative predictive value (NPV) voor alle
modellen was 84,1%, wat impliceert dat 84,1% van alle voorspelde stoffen met een “low toxicity”-categorisatie
daadwerkelijk een lage toxiciteit had. De positive predictive value (PPV) voor alle modellen was 61,1%, wat impliceert dat
61,1% van alle stoffen waarvoor een “high toxicity”-categorisatie werd voorspeld, daadwerkelijk een hoge toxiciteit had.
De algehele nauwkeurigheid van de modellen was 78,7%, wat betekent dat 78,7% van alle toxiciteitsklassen correct
werden voorspeld. Als gekeken wordt naar verschillen tussen de ZZS-clusters, zien we dat de nauwkeurigheid, specificiteit
en sensitiviteit van de modellen onderling erg verschilt. Merk hierbij op dat het afleiden van de modellen niet alleen op
basis van data voor ZZS is gebeurd. Wanneer we dit vergelijken met modelindicatoren voor stoffen die niet zijn
aangemerkt als ZZS (zo’n 80% van de complete dataset), dan zien we dat de toxiciteit van stoffen binnen een aantal
clusters beter te voorspellen is dan de toxiciteit van stoffen die niet aangemerkt staan als ZZS. Voorbeelden van
voldoende grote(!) clusters waarvoor de nauwkeurigheid, sensitiviteit en specificiteit hoger zijn dan de indicatoren voor
niet-ZZS data zijn cluster 69 en cluster 48. Er zijn ook kleinere ZZS-clusters waarbinnen toxiciteit beter te voorspellen is
dan voor niet-ZZS (zoals cluster 5), maar gezien de kleine datasets kan dit ook op toeval berusten.
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Figuur 16: Modelindicatoren (sensitiviteit, specificiteit en nauwkeurigheid) voor de resultaten per ZZS-cluster voor de test- en trainingsdataset (de
dataset waarop de modellen niet, respectievelijk wel zijn gebaseerd). De zwarte cijfers in de tegels geven de grootte van de subset aan. De dataset is
geordend op datasetgrootte (grootste bovenaan).

Hoewel voorspellingen voor continue data (ACsos) relatief onzeker waren (zie Hoofdstuk 4.3.3.), zijn de voorspellingen
voor de toxiciteitsklassen veel nauwkeuriger. Er zijn echter grote verschillen in de bepaalde sensitiviteit specificiteit en
nauwkeurigheid tussen meegenomen in vitro assays en ZZS-clusters (en combinaties daarvan). Verschillende ZZS zorgen
namelijk niet altijd voor een verhoogde activiteit in alle assays. Om een potentieel toxische stof (waarvoor geen
toxiciteitsgegevens beschikbaar zijn) aan te kunnen merken als ZZS moet deze stof voldoen aan een aantal criteria. Deze
zijn vastgelegd in artikel 57 van de REACH Verordening (EG) 1907/2006. Stoffen met een of meer van de volgende
toxicologische eigenschappen voldoen aan deze criteria: de stoffen zijn kankerverwekkend, mutageen of giftig voor de
voortplanting. Om een stof aan te kunnen merken als potentiéle ZZS op basis van modellen met data uit de ToxCast-
database is dus van belang om de juist in vitro assays te selecteren met eindpunten die het sterkst correleren met de
Z7S-criteria. Mogelijk blijft dat een stof niet mutageen is, maar vertoont deze waarschijnlijk wel biologische activiteit in
een assay gerelateerd aan reproductie (zoals een hormoonverstoringsassay). Ook binnen de ZZS-clusters zoals bepaald
in Hoofdstuk 2.3. kunnen stoffen voorkomen die afwijken ten opzichte van andere stoffen in het cluster als we kijken
naar de biologische activiteit van de stof in diverse assays.

435 Subsets van in vitro toxiciteitstesten gebaseerd op annotaties
In vitro assayeindpunten werden geclusterd op basis van diverse annotaties (Zie Hoofdstuk 4.2.5.). De samenstelling van
deze clusters aan assayeindpunten kan worden teruggevonden in de ToxCast database (U.S. EPA, 2015). Resultaten met
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betrekking tot modellen die zijn getraind zijn op subsets van data op basis in vitro annotaties zijn weergegeven in
Appendix Il. In een vervolgstap werden Random Forest-analyses en de meervoudige lineaire regressieanalyses gebaseerd
op de functionele groepen, aangezien deze de meest consistente verklarende parameters bleken te zijn.

Figuur 17: Voorspellingen van toxiciteitsgegevens (percentages van de voorspelde toxiciteitsgegevens die binnen — of buiten — een factor vijf van de
werkelijke toxiciteit liggen), wanneer in vitro testen worden geclusterd op basis van assay-annotaties.
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4.3.6 Algemene discussie m.b.t. toxiciteit

In dit hoofdstuk is gekeken naar de voorspelbaarheid van de toxiciteit van stoffen (ZZS en niet-ZZS) op basis van
functionele groepen en fysisch-chemische parameters. Over het algemeen was het voorspellend vermogen gebaseerd
op functionele groepen voor de Random Forest bijzonder laag, en was het voorspellend vermogen een stuk hoger voor
lineaire regressiemodellen. Bij het meenemen van de individuele functionele groepen is gebruik gemaakt van
dummyvariabelen in het regressiemodel. Bij een dummyvariabele (een variabele met een 0 of 1 welke de af- of
aanwezigheid van een structureel element weerspiegelt) met een waarde van O zal in het regressiemodel ervoor zorgen
dat de coéfficiént ervan uit de vergelijking verdwijnt, wat impliceert dat bij afwezigheid van het structurele element deze
niet wordt geacht bij te dragen aan de toxiciteit van de stof. Dit betekent dat ook niet wordt geacht dat deze structurele
elementen een omgekeerd effect kunnen hebben op activiteit binnen de assay (de aanwezigheid van het element zorgt
voor een verlaagde toxiciteit). Omgekeerd zorgt de waarde van 1 ervoor dat de coéfficiént functioneert als een
aanvullend snijpunt, aangezien deze waarde wordt vermenigvuldigd met 1. Van enkele functionele groepen is echter
bekend dat ze deactiverend zijn, wat betekent dat van stoffen met deze structurele groepen bekend is dat ze minder
toxisch zijn (Honma, 2020; Myatt et al., 2018). Deactiverende features (-1), structuren die mogelijk zorgen voor minder
biologische activiteit, zoals in sommige QSAR-software wordt meegenomen, zijn op dit moment niet meegenomen in de
modellen, wat betekent dat de toxiciteit van stoffen mogelijk ook overschat kan worden. Dit is met het oog op
beleidsvorming echter gunstiger dan dat de toxiciteit van stoffen wordt onderschat door de modellen. Ook bestaan er
mogelijk interacties tussen functionele groepen die toxische effecten kunnen versterken of afzwakken (synergisme of
antagonisme), welke naar verwachting niet lineair schalen met toxiciteit. Andere machine learning en deep learning-
modellen (zoals KNN (k-nearest neighbors) en andere neurale netwerken) zouden kunnen worden gebruikt om dergelijke
complexe relaties tussen de functionele groepen en toxiciteit bloot te leggen. Waar Random Forest in deze studie echter
minimaal 50 dataregels vereist (waarvan 30% wordt gebruikt in de testdata), vereisen neurale netwerken veel meer data
(RoRbach, 2018), welke niet altijd beschikbaar zijn.

Over het algemeen zijn er geen grote verschillen zichtbaar tussen de voorspelbaarheid van ZZS ten opzichte van niet-ZZS
in beide modellen, hoewel de verschillen in voorspelbaarheid wel groter zijn tussen de training- en testdataset bij niet-
Z7S. De Z7S-data beslaan een stuk minder datapunten ten opzichte van de niet-ZZS data en de stoffen in deze data zijn
beperkt tot stoffen met een relatief lage ACso. Dit betekent dat de stoffen een minder breed toxiciteitsdomein hebben
en daarom wellicht eenvoudiger te voorspellen zijn. De stoffen beslaan echter ook slechts een beperkte set aan
functionele groepen. Tussen clusters van ZZS werden over het algemeen wel grote verschillen waargenomen in de
voorspelbaarheid van toxiciteit wat mogelijk te wijten is aan verschillen in datasetgrootte, combinatie van in vitro assays
en combinaties van functionele groepen in de dataset. Wellicht is de voorspelbaarheid van toxiciteit hoger bij het
meenemen van diverse stofgroepen met gelijke toxische werkingsmechanismen (zie BTO-rapport Zijn PMOCs minder
giftig?). Hoewel de clusters in het huidige onderzoek zijn gebaseerd op “similarity indices” (gelijkheidsindices, zie
Hoofdstuk 2.3), hebben waarschijnlijk niet alle stoffen binnen de clusters precies hetzelfde toxicologische
werkingsmechanisme, wat kan zorgen voor spreiding van uitkomsten van in vitro assays. In het huidige rapport is daarom
gekozen om in vitro assays te clusteren om toxiciteitsvoorspellingen van stoffen op basis van gelijke
werkingsmechanismen te beoordelen. Hieruit blijkt dat met name toxiciteit op basis van een celmorfologisch doeltype
en neurologische ontwikkeling goed te voorspellen zijn, terwijl andere eindpunten (zoals membraameiwit-toxiciteit)
minder goed te voorspellen zijn. Daarnaast kan covariantie bestaan in in vitro assay typen tussen diverse categorieén,
zoals bijvoorbeeld het geval is voor neurologische ontwikkeling (beoogd doelfamilie) en elektrische activiteit
(technologisch doeltype). Dit betekent dat het afleiden van een model waarbij in vitro assays zijn geclusterd op basis van
een subcategorie op basis van de ene annotatie (bijvoorbeeld neurologische ontwikkeling binnen de annotatie beoogde
doelfamilie) zal leiden tot exact dezelfde voorspelde toxiciteit als een model waarbij assays zijn geclusterd op een andere
subcategorie binnen een andere annotatie. Het meenemen van een combinatie van zowel diverse stofgroepen als diverse
eindpunten vereist een behoorlijke rekenkracht en hoeveelheden data, aangezien dit mogelijk duizenden combinaties
van stofgroep en categorie betreft. Slechts een klein deel van deze combinaties bevat voldoende toxicologische data om
een Random Forest of regressieanalyse uit te voeren (> 50 dataregels). Per model blijft er dan een relatief klein aantal
datapunten over voor regressie, wat resulteert in een erg lage R? en p-waarde van de individuele regressies. Daarnaast
maakt dit het model minder geschikt om in de praktijk toe te passen, aangezien de voorspelbaarheid van toxiciteit voor
stoffen buiten de groep stoffen waarop het model gebaseerd is waarschijnlijk nog veel lager ligt. De algehele conclusie
van deze studie is dan ook dat de huidige analyses hoogstwaarschijnlijk onvoldoende in staat zijn om de
structuureigenschappen (op basis van functionele groepen gerapporteerd in de QSAR Toolbox) te relateren aan de
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toxiciteit van stoffen en dat op basis van het merendeel van de modellen onbekende stoffen niet als ZZS kunnen worden
aangemerkt, zeker niet op basis van modellen waarvoor een groot aantal assayeindpunten is gecombineerd. Er bestaan
echter grote verschillen tussen het voorspellend vermogen voor individuele in vitro assay eindpunten, waardoor er voor
een deel van de individuele in vitro assay eindpunten wel realistische toxiciteitsvoorspellingen gedaan kan worden.
Daarnaast is in de huidige studie enkel gekeken naar de individuele toxiciteit van stoffen, terwijl stoffen in mengsels
mogelijk extra of juist minder toxisch kunnen zijn. Ondanks dat de synergistische (of antagonistische) werking van
bepaalde stofcombinaties op het gebied van toxiciteit niet altijd bekend is, zijn er diverse manieren om om te gaan met
mengseltoxiciteit (ook in beleid). Het RIVM heeft in een recent rapport beschreven welke methoden kunnen worden
gebruikt door overheden om de effecten van stoffenmengsels voor mens en milieu te kunnen inschatten (Bodar et al,,
2022). Een samenvatting hiervan (inclusief implicaties voor het huidige BTO-rapport) staat in bijlage Ill. Hoewel de
toxiciteitsvoorspellingen in de huidige studie niet altijd even goed waren, zijn de voorspellingen naar verwachting wel
betrouwbaar genoeg om een uitspraak te kunnen doen over de toxiciteitsklasse van een stof, wat blijkt uit de hoge
berekende sensitiviteit en specificiteit van de modellen in de huidige studie. Dit is iets wat in de online applicatie
AquaPriori verder wordt uitgewerkt.
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5 Conclusies en aanbevelingen

Aan de hand van clustering kan een indeling gemaakt worden van Zeer Zorgwekkende Stoffen (ZZS) op basis van
moleculaire eigenschappen. Hiermee is het voor een brede range aan ZZS mogelijk om met een enkele
doelstofanalysemethode een beeld te vormen van het gedrag van ZZS in de (drink)watercyclus. Van de 36 ZZS die
gemeten zijn in een meetcampagne bij Nederlandse en Vlaamse drinkwaterbedrijven zijn 19 ZZS aangetroffen boven de
rapportagegrenzen. De meeste stoffen en de hoogste concentraties werden aangetroffen in oppervlaktewater. Op alle
locaties zijn benzotriazole en metolachloor ESA gevonden. Ook zijn deze stoffen aangetroffen in de hoogste
concentraties van alle gemeten stoffen.

In het toxiciteitshoofdstuk is gekeken naar de voorspelbaarheid van de toxiciteit van stoffen (ZZS en niet-ZZS) op basis
van functionele groepen en fysisch-chemische parameters. Over het algemeen was het voorspellend vermogen
gebaseerd op functionele groepen voor de Random Forest bijzonder laag, en was het voorspellend vermogen een stuk
hoger voor lineaire regressiemodellen. Ook zijn er geen grote verschillen zichtbaar tussen de voorspelbaarheid van ZZS
ten opzichte van niet-ZZS in beide modellen, hoewel de verschillen in voorspelbaarheid wel groter zijn tussen de
training- en testdataset bij niet-ZZS. Tussen clusters van ZZS werden wel grote verschillen waargenomen in de
voorspelbaarheid van toxiciteit wat mogelijk te wijten is aan verschillen in datasetgrootte, combinatie van in vitro
assays en combinaties van functionele groepen in de dataset. De algehele conclusie van het toxiciteitshoofdstuk is dat
voor het merendeel van de assayeindpunten de huidige analyses hoogstwaarschijnlijk onvoldoende in staat zijn om de
toxiciteit van stoffen te voorspellen op basis van structuureigenschappen. Ook kunnen op basis van het merendeel van
de modellen onbekende stoffen niet als ZZS kunnen worden aangemerkt, zeker niet op basis van modellen waarvoor
een groot aantal assayeindpunten is gecombineerd. Wel zijn reageren stoffen binnen hetzelfde cluster over het
algemeen wel op een zelfde manier in de bioassays, wat betekent dat het clusteren van stoffen op basis van
fingerprints zorgt voor clusters met stoffen met een vergelijkbaar toxisch werkingsmechanisme.

Er bestaan echter grote verschillen tussen het voorspellend vermogen voor individuele in vitro assay eindpunten,
waardoor er voor een deel van de individuele in vitro assay eindpunten wel realistische toxiciteitsvoorspellingen gedaan
kan worden. Daarnaast zijn de toxiciteitsvoorspellingen naar verwachting wel betrouwbaar genoeg om een uitspraak te
kunnen doen over de toxiciteitsklasse van een stof, wat blijkt uit de hoge berekende sensitiviteit en specificiteit van de
modellen in de huidige studie.

De volgende aanbevelingen worden gedaan:

e Ondanks dat de verschillen tussen moleculen klein zijn in een cluster, kan er echter nog wel een verschil in
werkingsmechanisme voor bijvoorbeeld toxiciteit of de zuivering zijn. Aanbevolen wordt om nader te
onderzoeken hoe omgegaan moet worden met de verschillen binnen een cluster.

e Regelmatig wordt de lijst met ZZS aangevuld met nieuwe ZZS-stoffen. RIVM identificeert deze nieuwe ZZS,
onder meer op basis van zelfclassificatie en gegevens van het ECHA (zo zijn in september 2023 een aantal ZZS
stoffen toegevoegd, zie https://rvs.rivm.nl/nieuws/nieuwe-zeer-zorgwekkende-stoffen-september-2023). Ook

zijn er recentelijk gewasbeschermingsmiddelen toegevoegd aan de ZZS. Het wordt aanbevolen om de
clustering na elke grote herziening van de ZZS-lijst te herhalen.

e De huidige aanpak volgt een individuele stofaanpak. Het kan echter zo zijn dat een combinatie van stoffen
samen zorgt voor een verhoogde toxiciteit, of dat er juist minder toxiciteit wordt waargenomen bij een
bepaalde combinatie van stoffen. In het milieu en in ons (drink)water zal het nooit voorkomen dat slechts één
stof toxische activiteit vertoond. Om deze reden is er steeds meer aandacht voor een risicogestuurde aanpak
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door middel van mengseltoxiciteit. Het RIVM heeft in een recent rapport beschreven welke methoden kunnen
worden gebruikt door overheden om de effecten van stoffenmengsels voor mens en milieu te kunnen
inschatten. Een samenvatting hiervan (inclusief implicaties voor het huidige BTO-rapport) staat in bijlage Ill. In
een toekomstig project kan dieper gekeken worden naar de mengseltoxiciteit van ZZS (en andere stoffen)
door gebruik te maken van methoden die in deze bijlage staan beschreven.

e Eénvan de conclusies in het huidige rapport is dat het betrouwbaarder is om toxiciteitsklassen te voorspellen
dan om toxiciteitswaarden te voorspellen (ACsos). In een vervolgproject kan mogelijk dieper ingegaan worden
op het gebruik van toxiciteitsklassen in de prioriteren van stoffen (zowel ZZS als niet-ZZS). In dat geval kan dan
ook opnieuw gekeken worden naar de toxische werkingsmechanismen van clusters van ZZS. Waarschijnlijk zijn
stoffen in bepaalde ZZS-clusters enkel toxisch voor specifieke eindpunten en vertonen ze niet allemaal
dezelfde activiteit in alle in vitro assayeindpunten. Aanbevolen wordt om meer inzicht te verkrijgen in de
(verschillende) toxische werkingsmechanismen van de ZZS-clusters.

e In het huidige onderzoek is niet gekeken naar de mogelijkheden om mengseltoxiciteit te voorspellen met het
oog op beleid. In een vervolgonderzoek na het huidige BTO-project ZZS kan gekeken worden naar het
groeperen van mengsels van ZZS en het effecten van mengsels en het onderbouwen van het MAF-concept
(het gebruik van zogenaamde mixture allocation factors - een extra risicofactor om alle mogelijke risico’s voor
alle producten af te dekken) voor humane effecten bij immissietoetsen. Ook kan in vervolgonderzoek gekeken
kunnen worden naar ecotoxiciteit door SSDs (soortgevoeligheidsverdelingen) voor ZZS clusters op te stellen,
bijvoorbeeld op basis van data uit de ECOTOX-database van de US EPA, en (ms)PAFs op specifieke locaties op
basis van monitoringsdata.

e Het RIVM maakt gebruik van een ZZS similarity tool, waarmee stoffen vergeleken kunnen worden met de
meest gelijkende ZZS. Aanbevolen wordt om te onderzoeken of en hoe de in dit rapport gevolgde aanpak
d.m.v. clustering en voorspellingsmodellen in AquaPriori gecombineerd kunnen worden de ZZS similarity tool.
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| Appendix: Voorspellingsplots voor individuele
clusters

Figuur 18-a: Voorspelde toxiciteit (ACso in uM) door het meervoudige lineaire regressiemodel versus waargenomen toxiciteit, gebaseerd op
functionele groepen, geclusterd per assaytype (gebaseerd op beoogde doelfamilie), voor zowel de training- en testdataset, per ZZS-cluster.
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Figuur 29-b: Voorspelde toxiciteit (ACso in uM) door het meervoudige lineaire regressiemodel versus waargenomen toxiciteit, gebaseerd op
functionele groepen, geclusterd per assaytype (gebaseerd op beoogde doelfamilie), voor zowel de training- en testdataset, per ZZS-cluster.
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Figuur 29-c: Voorspelde toxiciteit (ACso in uM) door het meervoudige lineaire regressiemodel versus waargenomen toxiciteit, gebaseerd op
functionele groepen, geclusterd per assaytype (gebaseerd op beoogde doelfamilie), voor zowel de training- en testdataset, per ZZS-cluster.
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Figuur 29-d: Voorspelde toxiciteit (ACso in uM) door het meervoudige lineaire regressiemodel versus waargenomen toxiciteit, gebaseerd op
functionele groepen, geclusterd per assaytype (gebaseerd op beoogde doelfamilie), voor zowel de training- en testdataset, per ZZS-cluster.
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Il Appendix: Clustering in vitro assayeindpunten

L1 Beoogde doelfamilie (intended target type)

De beoogde doelfamilie geeft de individuele doelwitten voor alle assay-eindpunten weer. Deze families hebben
betrekking op genfamilies en omvatten morfologische en celcyclusconcepten (U.S. EPA, 2015).

Random Forest model

Over het algemeen werd bij het groeperen van in vitro assay’s op basis van de beoogde doelfamilie het hoogste
percentage verklaarde varianties bepaald voor in vitro assay’s gerelateerd aan nuclear receptors (50,84%), terwijl het
laagste % variantie verklaard door het Random Forest-model werd gevonden voor in vitro assay’s gerelateerd aan
membraaneiwitten (- 4,96%). Dit impliceert dat molecuulstructuren betere voorspellers zijn voor uitkomsten van
toxiciteitstesten gerelateerd aan nuclear receptors dan voor testen gerelateerd aan eiwitmembranen. In Figuur 29 is een
heatmap te zien die visualiseert in welke mate de functionele groepen correleren met toxiciteit voor assays binnen een
van de beoogde doelfamilies. De toename in MSE (%IncMSE) (vergelijking 1) komt overeen met de mate waarin de
functionele groepen de variantie in het Random Forest-model verklaren.

Lineaire regressiemodel

Over het algemeen resulteerde de meervoudige regressieanalyse, waarbij functionele groepen als verklarende variabelen
worden meegenomen in een verklaring van 26,1% (mediaan: 26.1%, S.E.: 0,06) van alle variantie in de toxiciteitsgegevens
(ACso's) bij het categoriseren van in vitro assay’s op basis van de beoogde doelfamilie. Over het algemeen werd bij het
groeperen van in vitro assay’s op basis van de beoogde doelfamilie het hoogste percentage verklaarde varianties in de
testdata bepaald voor in vitro assay’s gerelateerd aan neurologische ontwikkeling (87,84%), terwijl het laagste % variantie
verklaard door het regressiemodel werd gevonden voor assays gerelateerd aan membraaneiwitten (- 23,18%). Dit laat
zien dat er grote verschillen zitten tussen de voorspelbaarheid van toxiciteit binnen de verschillende doelfamilies. Figuur
30 laat de voorspelde effectconcentraties (Logio ACsos) zien, uitgezet tegen de waargenomen effectconcentraties,
gebaseerd op het meervoudige lineaire regressiemodel, met de functionele groepen als verklarende variabelen
(vergelijking 2), voor alle afzonderlijke beoogde doelfamilies afzonderlijk. In totaal lag 69,83% van alle individueel
voorspelde ACso's binnen een factor 5 van de waargenomen ACso's; 15.7% van de voorspelde datapunten lag meer dan
een factor vijf onder de waargenomen datapunten (onderschat), terwijl 14.4% van alle datapunten meer dan een factor
vijff boven de waargenomen data lag (overschat). Geen van de voorspelde datapunten waren identiek aan de
waargenomen datapunten. Over het algemeen zijn er geen grote verschillen zichtbaar tussen de voorspelbaarheid van
ACso-waarden in de trainingsdataset (waarop het model is gebaseerd) en de testdataset (met stoffen waarop het model
niet is getraind). 70,4% van de voorspelde datapunten binnen de trainingsdataset lag binnen een factor vijf van de
waargenomen waarden, tegenover 68.5% van de voorspelde datapunten in de testdataset (Figuur 28). Ook is de
gemiddelde adjusted R? (0.27) van alle modellen getraind op de trainingsdataset vergelijkbaar met de gemiddelde Q?
(0.21) wanneer de modellen worden toegepast op de testdataset. Ook zijn er geen grote verschillen zichtbaar tussen de
voorspelbaarheid van ZZS ten opzichte van niet-ZZS, hoewel de verschillen in voorspelbaarheid wel groter zijn tussen de
training- en testdataset bij niet-ZZS. 72,9% van de voorspelde datapunten binnen de ZZS-data lag binnen een factor vijf
van de waargenomen waarden, tegenover 69.5% van de voorspelde datapunten in de niet-ZZS-data (Figuur 28). De ZZS
hebben mogelijk een heel specifieke soort toxiciteit en de clusters zijn de manier om dit te onderscheiden. Deze clusters
moeten dan gelinkt worden aan een specifiek bioassaytype dat hier geschikt voor is. De ZZS-data beslaan echter een stuk
minder datapunten en de stoffen in deze data zijn beperkt tot stoffen met een relatief lage ACso. Dit betekent dat de
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stoffen een minder breed toxiciteitsdomein hebben en daarom wellicht eenvoudiger te voorspellen zijn.

Figuur 19: Heatmap die de toename in MSE (Mean Squared Error) visualiseert (= in welke mate de variabele de variantie in toxiciteit in het Random
Forest-model verklaart) voor de functionele groepen (y-as), bij het groeperen van de in vitro toxiciteitstesten op basis van de beoogde doelfamilie (x-
as).
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Figuur 20: Voorspelde toxiciteit (ACso in uM) door het meervoudige lineaire regressiemodel versus waargenomen toxiciteit, gebaseerd op functionele
groepen, geclusterd per assaytype (gebaseerd op beoogde doelfamilie), voor zowel de training- en testdataset, als stoffen die als ZZS staan
aangemerkt en stoffen die niet als ZZS staan aangemerkt.

Figuur 21: Voorspelde toxiciteit (ACso in uM) door het meervoudige lineaire regressiemodel versus waargenomen toxiciteit, gebaseerd op functionele
groepen, geclusterd per beoogde doelfamilie.
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ILII Technologisch doeltype (technological target type)

Het technologische doeltype probeert de individuele doelen voor alle assay-eindpunten weer te geven. Deze families
hebben betrekking op genfamilies en omvatten morfologische en celcyclusconcepten(U.S. EPA, 2015).

Random Forest model

Over het algemeen werd bij het groeperen van in vitro toxiciteitstesten op basis van het technologische doeltype het
hoogste percentage verklaarde varianties bepaald voor in vitro toxiciteitstesten met een chemisch technologische
doeltype (6,45%), terwijl het laagste % variantie verklaard door het Random Forest-model werd gevonden voor in vitro
toxiciteitstesten met een metabolisch technologisch doeltype (-0,75%). In Figuur 31 is een heatmap te zien die
visualiseert in welke mate de functionele groepen correleren met toxiciteit voor toxiciteitstesten binnen een van de
beoogde technologische doeltypes. De toename in MSE (%IncMSE) (vergelijking 1) komt overeen met de mate waarin de
functionele groepen de variantie in het Random Forest-model verklaren.

Lineair regressiemodel

Over het algemeen resulteerde de meervoudige regressieanalyse, waarbij functionele groepen als verklarende variabelen
worden meegenomen in een verklaring van 39,2% (mediaan: 36.7%, S.E.: 0,05) van alle variantie in de toxiciteitsgegevens
(ACso's) bij het categoriseren van in vitro toxiciteitstesten op basis van het technologische doeltype. Over het algemeen
werd bij het groeperen van in vitro toxiciteitstesten op basis van het technologisch doeltype het hoogste percentage
verklaarde varianties bepaald voor in vitro toxiciteitstesten met een type gerelateerd aan elektrische activiteit (87,84%),
terwijl het laagste % variantie verklaard door het regressiemodel werd gevonden voor testen gerelateerd aan DNA (16%).
Dit laat zien dat er grote verschillen zitten tussen de voorspelbaarheid van toxiciteit binnen de verschillende
technologische doeltypen, hoewel deze verschillen wel lager zijn wanneer de in vitro testen worden gecategoriseerd op
basis van technologisch doeltype.

Figuur 14 laat de voorspelde effectconcentraties (Logio ACsos) zien, uitgezet tegen de waargenomen effectconcentraties,
gebaseerd op het meervoudige lineaire regressiemodel, met de functionele groepen als verklarende variabelen
(vergelijking 2), voor alle afzonderlijke beoogde doelfamilies afzonderlijk. In totaal lag 69,77% van alle individueel
voorspelde ACso's binnen een factor 5 van de waargenomen ACso's; 15% van de voorspelde datapunten lag meer dan een
factor vijf onder de waargenomen datapunten (onderschat), terwijl 15.1% van alle datapunten meer dan een factor vijf
boven de waargenomen data lag (overschat). Geen van de voorspelde datapunten waren identiek aan de waargenomen
datapunten.

Over het algemeen zijn er geen grote verschillen zichtbaar tussen de voorspelbaarheid van ACso-waarden in de
trainingsdataset (waarop het model is gebaseerd) en de testdataset (met stoffen waarop het model niet is getraind). 70%
van de voorspelde datapunten binnen de trainingsdataset lag binnen een factor vijf van de waargenomen waarden,
tegenover 69.2% van de voorspelde datapunten in de testdataset (Figuur 28). Ook is de gemiddelde adjusted R? (0.285)
van alle modellen getraind op de trainingsdataset vergelijkbaar met de gemiddelde Q? (0.26) wanneer de modellen
worden toegepast op de testdataset. Ook zijn er geen grote verschillen zichtbaar tussen de voorspelbaarheid van ZZS ten
opzichte van niet-ZZS, hoewel deze verschillen wel groter zijn dan tussen de training- en testdataset. 71,8% van de
voorspelde datapunten binnen de ZZS-data lag binnen een factor vijf van de waargenomen waarden, tegenover 69.4%
van de voorspelde datapunten in de niet-ZZS-data (Figuur 32). De ZZS-data beslaan echter een stuk minder datapunten
en de stoffen in deze data zijn beperkt tot stoffen met een relatief lage ACso. Dit betekent dat de stoffen een minder
breed toxiciteitsdomein hebben en daarom wellicht eenvoudiger te voorspellen zijn.
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Figuur 22: Heatmap die de toename in MSE (Mean Squared Error) visualiseert (= in welke mate de variabele de variantie in toxiciteit in het Random
Forest-model verklaart) voor de functionele groepen (y-as), bij het groeperen van de in vitro toxiciteitstesten op basis van het technologisch doeltype
(x- as).

Figuur 23: Voorspelde toxiciteit (ACso in uM) door het meervoudige lineaire regressiemodel versus waargenomen toxiciteit, gebaseerd op functionele
groepen, geclusterd per assaytype (gebaseerd op technologisch doeltype), voor zowel de training- en testdataset, als stoffen die als ZZS staan
aangemerkt en stoffen die niet als ZZS staan aangemerkt.

Figuur 24: Voorspelde toxiciteit (ACso in uM) door het meervoudige lineaire regressiemodel versus waargenomen toxiciteit, gebaseerd op functionele
groepen, geclusterd per technologisch doeltype.
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1L Assayontwerptype (assay design type)

Het ontwerptype van de assay vertegenwoordigt de methode waarmee een biologisch of fysisch proces wordt vertaald
naar een detecteerbaar signaal (U.S. EPA, 2015). De annotatie van het assayontwerptype legt de methode vast waarmee
het technologische doel wordt gemeten.

Random Forest model

Over het algemeen werd bij het groeperen van assays op basis van het assayontwerptype het hoogste percentage
verklaarde varianties bepaald voor assays met een background reporter assayontwerptype (5,53%), terwijl het laagste %
variantie verklaard door het Random Forest-model werd gevonden voor toxiicteitstesten met een ratiometrisch
assayontwerptype (- 2,89%). In Figuur 16 is een heatmap te zien die visualiseert in welke mate de functionele groepen
correleren met toxiciteit voor testen binnen een van de assayontwerptypes. De toename in MSE (%IncMSE) (vergelijking
1) komt overeen met de mate waarin de functionele groepen de variantie in het Random Forest-model verklaren.

Lineair regressiemodel

Over het algemeen resulteerde de meervoudige regressieanalyse, waarbij functionele groepen als verklarende variabelen
worden meegenomen in een verklaring van 37,1% (mediaan: 30.5%, S.E.: 0,05) van alle variantie in de toxiciteitsgegevens
(ACso's) bij het categoriseren van in vitro assays op basis van het technologische doeltype. Over het algemeen werd bij
het groeperen van in vitro assay’s op basis van het assayontwerptype het hoogste percentage verklaarde varianties
bepaald voor in vitro assay’s met een functional reporter ontwerptype (87,87%), terwijl het laagste % variantie verklaard
door het regressiemodel werd gevonden voor assay’s met een enzyme reporter ontwerptype(14.9%) (Tabel 1). Dit laat
zien dat er grote verschillen zitten tussen de voorspelbaarheid van toxiciteit binnen de verschillende assayontwerptypen,
hoewel deze verschillen wel lager zijn wanneer de in vitro toxiciteitstesten worden gecategoriseerd op basis van
ontwerptype.

Figuur x laat de voorspelde effectconcentraties (Logio ACsos) zien, uitgezet tegen de waargenomen effectconcentraties,
gebaseerd op het meervoudige lineaire regressiemodel, met de functionele groepen als verklarende variabelen
(vergelijking 1), voor alle afzonderlijke beoogde doelfamilies afzonderlijk. In totaal lag 68,92% van alle individueel
voorspelde ACso's binnen een factor 5 van de waargenomen ACso's; 5,9% van de voorspelde datapunten lag meer dan
een factor vijf onder de waargenomen datapunten (onderschat), terwijl 29,5% van alle datapunten meer dan een factor
vijff boven de waargenomen data lag (overschat). Geen van de voorspelde datapunten waren identiek aan de
waargenomen datapunten.

Over het algemeen zijn er geen grote verschillen zichtbaar tussen de voorspelbaarheid van ACso-waarden in de
trainingsdataset (waarop het model is gebaseerd) en de testdataset (met stoffen waarop het model niet is getraind).
69,2% van de voorspelde datapunten binnen de trainingsdataset lag binnen een factor vijf van de waargenomen
waarden, tegenover 68,2% van de voorspelde datapunten in de testdataset (Figuur 9). Ook is de gemiddelde adjusted R?
(0.243) van alle modellen getraind op de trainingsdataset vergelijkbaar met de gemiddelde Q2 (0.198) wanneer de
modellen worden toegepast op de testdataset. Ook zijn er geen grote verschillen zichtbaar tussen de voorspelbaarheid
van ZZS ten opzichte van niet-ZZS, hoewel deze verschillen wel groter zijn dan tussen de training- en testdataset. 71,6%
van de voorspelde datapunten binnen de ZZS-data lag binnen een factor vijf van de waargenomen waarden, tegenover
68.5% van de voorspelde datapunten in de niet-ZZS-data (Figuur 9). De ZZS-data beslaan echter een stuk minder
datapunten en de stoffen in deze data zijn beperkt tot stoffen met een relatief lage ACso. Dit betekent dat de stoffen een
minder breed toxiciteitsdomein hebben en daarom wellicht eenvoudiger te voorspellen zijn.
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Figuur 25: Heatmap die de toename in MSE (Mean Squared Error) visualiseert (= in welke mate de variabele de variantie in toxiciteit in het Random
Forest-model verklaart) voor de functionele groepen (y-as), bij het groeperen van de in vitro assays op basis van de assayontwerptype (x- as).
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Figuur 26: Voorspelde toxiciteit (ACso in uM) door het meervoudige lineaire regressiemodel versus waargenomen toxiciteit, gebaseerd op functionele
groepen, geclusterd per assaytype (gebaseerd op assayontwerptype), voor zowel de training- en testdataset, als stoffen die als ZZS staan aangemerkt
en stoffen die niet als ZZS staan aangemerkt.

Figuur 27: Voorspelde toxiciteit (ACso in uM) door het meervoudige lineaire regressiemodel versus waargenomen toxiciteit, gebaseerd op functionele
groepen, geclusterd per assayontwerptype.
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v Organisme en weefseltype (model type)

Random Forest model

Over het algemeen werd bij het groeperen van assays op basis van het organisme en weefseltype het hoogste percentage
verklaarde varianties bepaald voor assays met menselijke niercellen (5,77%), terwijl het laagste % variantie verklaard
door het Random Forest-model werd gevonden voor assays met menselijke hersencellen (- 2,59%). In Figuur 37 is een
heatmap te zien die visualiseert in welke mate de functionele groepen correleren met toxiciteit voor assays binnen één
van de organisme-weefseltypecombinaties. De toename in MSE (%IncMSE) (vergelijking 1) komt overeen met de mate
waarin de functionele groepen de variantie in het Random Forest-model verklaren.

Lineair regressiemodel

Over het algemeen resulteerde de meervoudige regressieanalyse, waarbij functionele groepen als verklarende variabelen
worden meegenomen in een verklaring van 37,8% (mediaan: 34.9%, S.E.. 0,04%) van alle variantie in de
toxiciteitsgegevens (ACso's) bij het categoriseren van in vitro toxiciteitstesten op basis van het technologische doeltype.
Over het algemeen werd bij het groeperen van in vitro toxiciteitstesten op basis van organisme en weefseltype het
hoogste percentage verklaarde varianties bepaald voor in vitro toxiciteitstesten met corticale cellen van ratten (85,44%),
terwijl het laagste % variantie verklaard door het regressiemodel werd gevonden voor assay’s met menselijke levercellen
(14.6%). Dit laat zien dat er grote verschillen zitten tussen de voorspelbaarheid van toxiciteit tussen de verschillende
celtypen, hoewel deze verschillen wel lager zijn wanneer de in vitro testen worden gecategoriseerd binnen diverse
celtypen (organisme-weefseltypecombinatie).

Figuur 38 laat de voorspelde effectconcentraties (Logio ACsos) zien, uitgezet tegen de waargenomen effectconcentraties,
gebaseerd op het meervoudige lineaire regressiemodel, met de functionele groepen als verklarende variabelen
(vergelijking 2), voor alle afzonderlijke beoogde doelfamilies afzonderlijk. In totaal lag 68,92% van alle individueel
voorspelde ACso's binnen een factor 5 van de waargenomen ACso's; 5,9% van de voorspelde datapunten lag meer dan
een factor vijf onder de waargenomen datapunten (onderschat), terwijl 29,5% van alle datapunten meer dan een factor
vijff boven de waargenomen data lag (overschat). Geen van de voorspelde datapunten waren identiek aan de
waargenomen datapunten.

Over het algemeen zijn er geen grote verschillen zichtbaar tussen de voorspelbaarheid van ACso-waarden in de
trainingsdataset (waarop het model is gebaseerd) en de testdataset (met stoffen waarop het model niet is getraind).
71,8% van de voorspelde datapunten binnen de trainingsdataset lag binnen een factor vijf van de waargenomen
waarden, tegenover 70,2% van de voorspelde datapunten in de testdataset (Figuur 28). Ook is de gemiddelde adjusted
R? (0.298) van alle modellen getraind op de trainingsdataset vergelijkbaar met de gemiddelde Q? (0.235) wanneer de
modellen worden toegepast op de testdataset. Ook zijn er geen grote verschillen zichtbaar tussen de voorspelbaarheid
van ZZS ten opzichte van niet-ZZS, hoewel deze verschillen wel groter zijn dan tussen de training- en testdataset. 73,8%
van de voorspelde datapunten binnen de ZZS-data lag binnen een factor vijf van de waargenomen waarden, tegenover
70.9% van de voorspelde datapunten in de niet-ZZS-data (Figuur 39). De ZZS-data beslaan echter een stuk minder
datapunten en de stoffen in deze data zijn beperkt tot stoffen met een relatief lage ACso. Dit betekent dat de stoffen een
minder breed toxiciteitsdomein hebben en daarom wellicht eenvoudiger te voorspellen zijn.
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Figuur 28: Heatmap die de toename in MSE (Mean Squared Error) visualiseert (= in welke mate de variabele de variantie in toxiciteit in het Random
Forest-model verklaart) voor de functionele groepen (y-as), bij het groeperen van de in vitro assays op basis van organisme - weefseltypecombinatie
(x- as).

Figuur 29: Voorspelde toxiciteit (ACso in uM) door het meervoudige lineaire regressiemodel versus waargenomen toxiciteit, gebaseerd op functionele
groepen, geclusterd per assaytype (gebaseerd op organisme - weefseltypecombinatie), voor zowel de training- en testdataset, als stoffen die als ZZS
staan aangemerkt en stoffen die niet als ZZS staan aangemerkt.

Figuur 30: Voorspelde toxiciteit (ACso in uM) door het meervoudige lineaire regressiemodel versus waargenomen toxiciteit, gebaseerd op functionele
groepen, geclusterd per organisme-weefseltypecombinatie.
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Il Appendix: Ontwikkelingen en beleidscontext
cumulatie

Het RIVM beschrijft welke methoden kunnen worden gebruikt door overheden om de effecten van stoffenmengsels voor
mens en milieu te kunnen inschatten (Bodar et al., 2022). Ook wordt er gekeken naar hoe andere landen binnen de EU
(Denemarken, Belgié (Vlaanderen) en Duitsland) omgaan met mengseltoxiciteit.

Cumulatie bij de emissie van zeer zorgwekkende stoffen (ZZS) wordt momenteel niet meegenomen bij
vergunningverlening. Dit maakt dat de gezondheidskundige risico’s voor omwonenden momenteel onvoldoende kunnen
worden ingeschat en onderschatting niet kan worden uitgesloten. Cumulatie is de optelling van milieu- en
gezondheidsrisico’s door gelijktijdige blootstelling aan verschillende chemische stoffen, waaronder ZZS. Het is echter
lastig om deze effecten door cumulatie te voorspellen, aangezien veel verschillende, potentieel toxische, stoffen uit veel
verschillende bronnen momenteel in het milieu aanwezig zijn, welke via verschillende blootstellingsroutes (huidcontact,
inademing, inname via voedsel en drinkwater) in de mens terechtkomen. Dit maakt het een complexe vraagstelling. In
de RIVM-studie wordt daarom nog niet naar de geaggregeerde blootstelling van de mens aan mengsels gekeken, maar
focust deze zich eerst enkel op de manier waarop mengsels milieucompartimenten kunnen bereiken. Hierbij is een sterke
focus op “onbedoelde” mengsels van stoffen die vrijkomen bij vergunde milieu-emissies bij industriéle processen. In het
onderzoek zijn andere mengsels die niet intentioneel zijn ontstaan in producten/preparaten en waar mensen aan kunnen
worden blootgesteld niet meegenomen.

Uiteindelijk zijn 915 ZZS-stoffen in dit BTO-onderzoek geclusterd op basis van similarity MACCS-scores. Hierin zitten 66k
gewasbeschermingsmiddelen en (dier)geneesmiddelen. De hier beschreven RIVM-studie houdt enkel rekening met
vergunningverlening voor niet-gewasbeschermingsmiddelen. Residuen van gewasbeschermingsmiddelen, biociden en
(dier)geneesmiddelen vallen buiten de scope van dit onderzoek.

1K Wetenschappelijke achtergrond bij het begrip cumulatie.

Stoffenkaders zijn van oudsher gericht op een stof-per-stof benadering, waarmee interactie tussen stofeigenschappen in
mengsels niet worden meegenomen. Het is lastig om mengsels te reguleren aangezien stoffen in mengsels soms door
verschillende producenten op de markt worden gebracht. Daarnaast moet men kunnen inschatten welke stoffen al in
het milieu(compartiment) aanwezig zijn en welke mengsels zullen ontstaan bij toevoeging van een nieuwe stof. Om een
uitspraak te kunnen doen over de toxiciteit van een mengsel dient men rekening te houden met de toxicologische
werkingsmechanismen van een stof. Bij een gelijk werkingsmechanisme (bijvoorbeeld twee neurotoxische stoffen) kan
de toxiciteit worden opgeteld, maar vaak hebben verschillende stoffen in een mengsel verschillende
werkingsmechanismen of is het werkingsmechanisme van individuele stoffen niet bekend. Wanneer stoffen in een
mengsel allen hetzelfde werkingsmechanisme hebben, wordt het concentratie-additieprincipe toegepast. Bij een
verschillend (of onbekend) werkingsmechanisme, wordt het responsadditieprincipe (of independent action) toegepast.

Concentratie-additie (CA): hierbij wordt ervan uitgegaan dat de stoffen een gelijk werkingsmechanisme hebben en
alleen verschillen in potentie zullen leiden tot een verschillend effect (toxicologische potentie). Van elke stof in een
mengsel kan de concentratie dan worden geconverteerd naar toxische eenheden door deze te delen door eenzelfde
effectwaarde (de concentratie waarop (g)een effect wordt verwacht). Deze worden vervolgens opgeteld:
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TU, .. = Z G
mix L ECXL

Deze toxische eenheden (toxic units: TUs) kunnen vervolgens worden omgerekend naar ECso-mix middels (Escher et al.,
2020):

1
EC =

X
mix TUmix

Hiervoor zijn wel altijd data nodig m.b.t. relatieve effectwaarden (die de toxische potentie van een stof beschrijven) en
concentraties in het milieucompartiment.

Responsadditie (RA) of Independent Action (IA): bij dit model wordt ervan uitgegaan dat elke stof een ander
werkingsmechanisme heeft en onafhankelijk bijdraagt aan het effect van de mengsel. Ook hier kunnen berekeningen
enkel worden uitgevoerd als er informatie bekend is over de concentratie van de individuele stoffen in het
milieucompartiment en het effect wat de individuele stoffen hebben op mens en milieu.

effectm =1 | [(1 - effecty

Het werkingsmechanisme en het effect van veel stoffen in humane toxicologie is echter vaak onbekend, waardoor dit
model voornamelijk in ecotoxicologie wordt toegepast om de toxische druk van mengsels (uitgedrukt in msPAF) op
levensgemeenschappen te beoordelen.

Interactie: deze term wordt gebruikt bij situaties waarin stoffen elkaars effect kunnen versterken of afzwakken. Dit is
sterk afhankelijk van de samenstelling van het mengsel en behoeft per definitie een case-by-case benadering.

De modellen die hierboven zijn beschreven houden geen rekening met het feit dat stoffen verschillende effecten kunnen
hebben (bijvoorbeeld zowel neurotoxisch als kankerverwekkend). Bij elk model wordt uitgegaan van één type effect.
Voor milieueffecten blijken het CA-model en het IA-model goed te werken, met name omdat er naar generieke effecten
wordt gekeken (mortaliteit, voorplanting en overleving). Eindpunten bij het bepalen van gezondheidskundige effecten
zijn erg specifiek en hierbij speelt blootstellingsroute een grote rol bij het waar te nemen effect. Om deze reden is het
heel lastig om mengseleffecten te berekenen voor de mens. Dit is enkel mogelijk voor specifieke orgaaneffecten.
Mengseltoxiciteit voor milieueffecten is vaak dus eenvoudiger te bepalen dan voor gezondheidskundige effecten. Om dit
wel mogelijk te kunnen maken is meer informatie nodig over de interne blootstelling van stoffen in het menselijk lichaam,
en de daaraan gelieerde tarnsformatieprocessen. Daarbij worden deze effecten vaak bepaald door een beperkt aantal
stoffen in het mengsel (< 10) (Posthuma et al., 2016). De aard van deze stoffen kan echter per locatie verschillen. Dit is
van belang wanneer cumulatie wordt meegenomen in vergunningverlening.

Groeperen van stoffen

Stofconcentraties van stoffen met eenzelfde werkingsmechanisme binnen een mengsel kunnen worden gegroepeerd
door deze te converteren naar Toxic Equivalency Factors (e.g. PCB-equivalenten (Van den Berg et al., 1998)) of relatieve
potentiefactoren (e.g. bij PFAS en PAKs (Nisbet and Lagoy, 1992; Zeilmaker et al., 2018)). In een eerder BTO-project
werden effectsignaalwaarden per effecttype (per bioassay) afgeleid op basis van effectwaarden voor een referentiestof.
Technisch gezien werd hier dus dezelfde aanpak gehanteerd als hierboven (voor PAKs en PFASs). Stoffen worden hier
niet gegroepeerd, maar worden wel zo beoordeeld (door het gebruik van referentiestoffen en relatieve
potentiefactoren). Voor het gebruik van relatieve potentiefactoren kan het verstandig zijn om enkel bioassays mee te
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nemen die relevant zijn in de beoordeling van ZZS, zoals bioassays gerelateerd aan genotoxiciteit. Om de toxiciteit van
een mengsel van ZZS te beoordelen is informatie over de samenstelling van het mengsel essentieel. De gezamenlijke
effecten van een mengsel van stoffen kunnen worden bepaald door middel van bioassays met eindpunten gerelateerd
aan ZZS-classificatie (b.v. genotoxiciteit of carcinogeniteit). In de praktijk worden veel mengsels in effluentdirect getest
op (eco)toxische effecten middels totaaleffluentbeoordelingen (TEB), waarbij in vivo (b.v. Daphnia magna, Brachydanio
rerio en Vibrio fischeri) en in vitro (b.v. Umu-C) bioassays zijn meegenomen (Maas et al., 2003). Hierbij is dus niet duidelijk
door welke (interactie van) individuele stoffen de effecten worden bepaald. Omdat de gevoeligheid van organismen per
stof kan verschillen is het van belang om meerdere bioassays en modelorganismen te gebruiken.

In dit BTO-onderzoek naar ZZS is enkel gekeken naar gezondheidskundige effecten van deze stofgroep, waarbij is
geclusterd op similarity van stoffen. Bij deze clusters is geen rekening gehouden met het toxicologisch
werkingsmechanisme van de stof, hoewel veel stoffen binnen de clusters wel een vergelijkbaar toxicologisch
werkingsmechanisme kunnen hebben (Zie Hoofdstuk 4.3.6. en Hoofdstuk 2.3). QSARs om toxiciteit te voorspellen van
Z7S zijn ontwikkeld op basis van toxicologische gegevens over humaanrelevante effecten (mutageniteit, neurotoxiciteit
etc.) uit ToxCast (Hoofdstuk 4). Deze data zijn gebaseerd op resultaten uit in vitro bioassays, waarbij voornamelijk
gebruikgemaakt wordt van menselijke cellen, terwijl in vivo bioassays typisch worden gebruikt om milieueffecten te
voorspellen.

[1R]! Huidige situatie cumulatie en vergunningverlening.

Op dit moment wordt in het huidig BTO-onderzoek naar ZZS amper rekening gehouden met de cumulatie van stoffen.
Daarbij wordt cumulatie momenteel ook beperkt meegenomen in vergunningverlening in Nederland. In onderstaande
tekst worden de manieren waarop cumulatie kan worden meegenomen in vergunningverlening verder toegelicht, op
basis van eerdergenoemd rapport van het RIVM (Bodar et al., 2022). Emissies naar lucht en water worden in dit rapport
apart behandeld omdat voor beiden een aparte beoordelingssystematiek geldt. Ook wordt onderscheid gemaakt tussen
immissies en emissies:

0 Immissie is het binnendringen van een stof in bodem, water of lucht. Het betreft hier enkel het primaire

ontvangende compartiment (oppervlaktewater of lucht)
0 Emissie is de uitstoot van stoffen uit industriéle puntbronnen (lozingspijp of schoorsteen).

Water

ABM. Momenteel wordt de waterbezwaarlijkheid van een stof beoordeeld middels de Algemene Beoordelingsmethodiek
(ABM). Via de ABM-tool worden stoffen ingedeeld in vier waterbezwaarlijkheidsklassen:

775 (2)

Niet snel afbreekbare, waterbezwaarlijke stoffen (A)

Afbreekbare, waterbezwaarlijke stoffen (B)

Stoffen die van nature voorkomen in het lokale oppervlaktewater (C)

O O oo

Bij elk van deze categorieén geldt een saneringsinspanning in de vorm van een bronaanpak met de best beschikbare
technieken (BBT). Dit zijn de inspanningen die van een lozer verwacht mogen worden om de lozing te voorkomen, en
komen voort uit de ABM-tool. In het RIVM-rapport worden deze technieken niet verder toegelicht. Mengsels worden
ingedeeld door gebruik te maken van de systematiek van de Europese CLP-verordening, op basis van toxiciteitsklassen
en regels om mengsels in te delen in deze toxiciteitsklassen. Het betreft hier enkel producten en preparaten en dus
“bedoelde” mengsels i.p.v. onbedoelde mengsels waarvan de precieze samenstelling niet altijd bekend is.

Immissietoets. Bij de immissietoets wordt de toelaatbaarheid van de lozing beoordeeld in het licht van de kwaliteit van
het waterlichaam wat de lozing ontvangt en de daarvoor beschikbare milieukwaliteitseisen (MKE). Deze toets stelt dan
vast of er verdergaande maatregelen dan de bronaanpak en BBT (zoals beoordeeld met de ABM-tool) nodig zijn. De


https://iplo.nl/thema/water/applicaties-modellen/vergunningverlening-toetsing-handhaving/abm-algemene-beoordelingsmethodiek/?utm_source=hdwater&utm_medium=link&utm_campaign=monitoring
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immissietoets is opgebouwd uit meerdere stappen. Bij de significantietoets wordt gekeken naar de
concentratieverhoging op de rand van de mengzone (de directe omgeving van het lozingspunt). Deze
concentratieverhoging mag hierbij niet meer dan 10% bedragen om cumulatie door meerdere lozingen te voorkomen.
Er wordt hierbij echter geen rekening gehouden met emissies van meerdere stoffen. Naast de significantietoets wordt
middels een normtoets nagegaan of de concentratieverhoging, bovenop het achtergrondgehalte, geen nadelig effect
heeft op de waterkwaliteit, door gebruik te maken van bestaande MKE voor oppervlaktewater. Hierbij wordt een
richtwaarde van 10% van de norm (MKE) gehanteerd.

Voor innamepunten van drinkwater geldt een aparte toetsing binnen de emissietoets. Hierbij wordt gebruikgemaakt van
een aparte MKE voor oppervlaktewater bij innamepunten voor drinkwater. Als deze MKE niet beschikbaar is, wordt een
signaleringswaarde van 0,1 pg/L gehanteerd. Bij verwachte overschrijding van deze waarde, moeten concentraties
getoetst worden aan drinkwaterrichtwaarden, onderbouwde gezondheidskundige grenzen, waarbij wel rekening wordt
gehouden met de bijdrage via diverse blootstellingsroutes (er wordt uitgegaan van hooguit 20% bijdrage via drinkwater).
Zoals hierboven beschreven is vergunningverlening er momenteel vooral op gericht om concentraties van individuele
stoffen te toetsen aan normen en worden mengsels niet beoordeeld.

Lucht
Toetsing op luchtemissies vindt plaats door stoffen volgens het Activiteitenbesluit in te delen in stofcategorieén en -
klassen, afhankelijk van hun fysisch-chemische of toxicologische eigenschappen. Voor ZZS gelden de volgende
stofklassen:

0 ERS: extreem risicovolle stoffen (zoals dioxine-achtigen)

0 MVP 1: minimalisatie-verplichte vaste stoffen

0 MVP 2: minimalisatie-verplichte gassen

Deze stofklassen zijn anders dan bij de watergerelateerde toetsen, waarin ZZS allen als gelijk worden behandeld. Bij
iedere stofklasse hoort een grensmassastroom (drempelwaarde om te zien of ongereinigde emissies relevant zijn) en
emissiegrenswaarde waar een industriéle puntbron aan moet voldoen. Is de omvang van alle emissies van het gehele
bedrijf groter dan de grensmassastroom (in gram per uur), dan is de emissie relevant. Daarna wordt de emissie getoetst
aan de emissiegrenswaarde (in milligram per kuub lucht). Gelijktijdig optredende emissies van verschillende stoffen
binnen eenzelfde stofcategorie of -klasse worden opgeteld. Gesommeerde ZZS emissies (voor ERS, MVP 1 en MVP 2)
worden getoetst aan de grensmassastroom voor MVP 2 (2,5 gram per uur). Bij de emissiegrenswaarde vindt een
vergelijkbare sommatiebepaling plaats, waarbij de totale ZZS-concentraties wordt getoetst aan de emissiegrenswaarde
voor MVP 2 (1 mg/m?3). In beide bepalingen worden stoffen uit andere stofgroepen niet meegenomen in de sommatie.
De grensmassastroom als drempelwaarde verdwijnt in de Omgevingswet, waardoor aandacht voor ZZS-emissies naar de
lucht vanuit meerdere bronnen binnen een bedrijf op de achtergrond lijken te raken. De sommatiebepaling voor de
emissiegrenswaarde blijft wel in de Omgevingswet, maar geldt enkel per stofklasse. Wanneer voor een individuele stof
of stofgroep de emissiegrenswaarde(n) worden overschreden, worden deze getoetst aan de maximaal toelaatbare
risiconiveau (MTR) voor lucht. Bij mengsels wordt de MTR-toetsing enkel uitgevoerd voor de relevante individuele ZZS-
bestanddelen in het mengsel, waarbij geen sommatie meer plaatsvindt. Bij afleiding van een MTR gaat men echter uit
van 100% allocatie via de lucht, waardoor geen marge wordt ingebouwd voor blootstelling via andere routes.

Cumulatiebenadering in omliggende landen

In omliggende landen wordt vaak de SVHC-lijst (substances of very high concern) van ECHA gebruikt om ZZS aan te
duiden. SVHC-criteria voor stoffen zijn echter kritischer dan ZZS-criteria, waardoor deze lijsten korten zijn. Duitsland en
Belgié (Vlaanderen) maken gebruik van biologische monitoring in effluent om impliciet de effecten van mengseltoxiciteit
mee te nemen in de beoordeling. Cumulatie-effecten lijken echter niet expliciet te worden vermeld in de
vergunningverlening. Er wordt echter wel rekening gehouden met de bijdrage van de lozing ten opzichte van de reeds
aanwezige stoffen in het oppervlaktewater (Brinkmann et al., 2016). Ook vindt in Duitsland, net als in Nederland,
sommatie plaats van stoffen uit dezelfde stofcategorieén bij luchtemissies. In Denemarken zijn richtlijnen hoe cumulatie
meegenomen kan worden bij vergunningverlening. Hierbij wordt getoetst aan het gewogen gemiddelde van de normen



BTO 2024.010 | April 2024 Zeer Zorgwekkende Stoffen (deel 1) — clustering, bemonstering en toxiciteit 70

voor de individuele stoffen en gaat men dus uit van concentratie-additie. Ook vindt in Denemarken biologische
monitoring van afvalwater plaats.
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. Andere beleidskaders

Kaderrichtlijn Water (KRW)

De KRW is een Europese richtlijn die waterbeheerders verplicht om maatregelen te nemen die nodig zijn om een goede
waterkwaliteit te waarborgen. De richtlijn bevat geen handvatten om mengseltoxiciteit (van ZZS) te voorkomen
(preventie), maar de effecten van mengseltoxiciteit worden wel in retrospect meegenomen door de ecologische toestand
(biodiversiteit) te monitoren. Dit zegt echter weinig over drinkwaterkwaliteit, aangezien oppervlaktewater wordt
gezuiverd alvorens hier drinkwater van wordt geproduceerd. Een afwijking in biodiversiteit kan mogelijk optreden door
een slechte chemische toestand, onder andere door mengseltoxiciteit. Om de beoordeling van mengsels van stoffen
mogelijk te maken, is in Nederland de Ecologische Sleutelfactor (ESF) ontwikkeld, waarbij de toxische druk op het systeem
direct kan worden getoetst aan de hand van gemeten concentraties. Ook wordt de ESF ingezet om v&or een lozing te
beoordelen of een locatie al belast is met stoffen.

REACH

REACH (Registratie, Evaluatie, Autorisatie en restrictie van Chemische stoffen) is een Europese verordening die zich richt
op de preventieve risicobeoordeling van individuele (ZZS-) stoffen en intentionele mengsels (producten), waarbij
modellen worden gebruikt om risico’s voor de mens in te schatten, door gebruik te maken van het concept van Mixture
Assessment/Allocation Factors (MAF). Het idee van MAF is dat op voorhand met een vaste factor al rekening gehouden
wordt met mengsels die later kunnen ontstaan. Hierbij werd tot voorheen echter geen rekening gehouden met
onbedoelde mengsels. Inmiddels is het MAF-concept ook voor onbedoelde mengsels onderbouwd door middel van
diverse verkennende studies (Rorije et al., 2022). In het onderzoek van Rorije et al. (2022) werd echter enkel gekeken
naar effecten van mengsels op waterorganismen en nog niet naar effecten van mengsels op de mens. Het betreft in dit
onderzoek ook een groter spectrum aan stoffen (bestrijdingsmiddelen, geneesmiddelen en industriéle producten) dan
in de vergunningverlening van industriéle emissies aan de orde is. Momenteel bestaan er vanuit de Europese Commissie
ook plannen om de MAF-aanpak op te nemen in de risicobeoordeling bij REACH-registratie. Dit betreft echter een
generieke risicobeoordeling die geen direct verband heeft met de daadwerkelijke risico’s van lokale emissies. In een
vervolgonderzoek na het huidige BTO-project ZZS kan gekeken worden naar het groeperen van mengsels van ZZS en het
effecten van mengsels en het onderbouwen van het MAF-concept voor humane effecten bij immissietoetsen.

Gewasbeschermingsmiddelen (inclusief gewasbeschermingsmiddelen die ZZS bevatten)

Toelating. Risico’s van gewasbeschermingsmiddelen worden beoordeeld volgens Europese wetgeving en criteria. Enkel
middelen die effectief zijn en geen onacceptabele risico’s hebben voor mens en milieu mogen enkele jaren in Nederland
worden verhandeld en gebruikt. Bij toelating worden enkel bedoelde mengsels (producten) beoordeeld door het CTGB.
EFSA (European Food Safety Authority) heeft een methode ontwikkeld om ook voor onbedoelde mengsels risico’s in te
schatten door stoffen in te delen in CAGs (cumulatieve assessmentgroepen), stoffen met een vergelijkbare toxisch
werkingsmechanismen. Blootstelling via voedsel en water van mengsels van bestrijdingsmiddelen kan vervolgens
berekend worden door gebruik te maken van MCRA (Monte Carlo Risk Assessment), ontwikkeld door het RIVM en
Wageningen Universiteit. Onbekend is of het CTGB gebruikmaakt van MCRA in hun risicobeoordelingen.

Onderzoek oppervlaktewater. Milieubelasting van bestrijdingsmiddelen op oppervlaktewater kan worden berekend
door gebruik te maken van het NMI-model (Nationale Milieu-Indicator), op basis van gebruik, geografische informatie,
emissie-informatie, stofeigenschappen en normen. Milieubelasting wordt vervolgens uitgedrukt in milieu-
indicatorpunten. Uit onderzoek blijkt echter dat in de oppervlaktewatermonsters slechts een klein deel van de (bekende)
stoffen de gezamenlijke mengseltoxiciteit bepalen. Daarnaast verschilt per locatie welke stoffen dit zijn, mede afhankelijk
van het schaalniveau.


https://www.stowa.nl/publicaties/ecologische-sleutelfactor-toxiciteit-hoofdrapport-deelrapporten-en-rekentools
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Onderzoek Toxische druk. De risico’s van (p)ZZS in gewasbeschermingsmiddelen kunnen worden bepaald door gebruik
te maken van soortgevoeligheidsverdelingen (SSDs). Deze verdelingen geven een beeld van de spreiding van
gevoeligheden van soorten op basis van in vivo ecotoxiciteitstesten. Door deze verdelingen te vergelijken met
monitoringsdata kan worden bepaald welk percentage van soorten potentieel last ondervindt van een bepaalde
concentratie van een stof (ook wel toxische druk genoemd). De toxische druk (op de y-as van de SSD) wordt uitgedrukt
in de potentieel aangetaste fractie van soorten (PAF). Bij het testen van mengsels van stoffen wordt een ‘meer-
stoffen/multiple substances’-PAF gebruikt om mengseltoxiciteit te meten. In vervolgonderzoek na het huidig BTO-ZZS-
project zouden SSDs voor ZZS clusters opgesteld kunnen worden op basis van de ECOTOX-database van de US EPA, en
(ms)PAFs op specifieke locaties op basis van monitoringsdata.

HnL.Iv Conclusies en perspectieven

Duidelijk is dat cumulatie een belangrijk onderdeel is in de risicobeoordeling van stoffen en dus ook bij
vergunningverlening, omdat dit een instrument is om blootstellingen en risico’s voor mens en milieu te beperken. De
vraag die cruciaal is in de RIVM-studie is of het meenemen van cumulatie van stoffen in de vergunningverlening van
meerwaarde is ten opzichte van de huidige situatie. Het RIVM beveelt aan om, los van wat methodologisch kan, ook te
onderzoeken waar het meneemen van deze effecten het meest zinvol is. De belangrijkste punten die onder andere
worden genoemd zijn:

- Hoe verhouden de onzekerheden rond cumulatie zich met onzekerheden in de risicobeoordeling en de

vergunningverlening?
- Inde regel draagt een klein aantal stoffen het meest bij aan mengseleffecten.

In het BTO-ZZS-project houden we geen rekening met mogelijke mengseltoxiciteit. Binnen de ZZS-clusters is deels
bekend welke hiervan de hoogste toxiciteit hebben. In aanvullend onderzoek na het huidig BTO ZZS project kan
worden onderzocht of deze stoffen ook verantwoordelijk zijn voor het grootste aandeel in eventuele
mengseltoxiciteit.
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IV Details meetmethode
.l Overzicht componenten en rapportagegrenzen
Rapportagegrens (ng/l)
Component Cas nummer Interne standaard Ultrapuur
water DRW | OPW | GW
Furosemide 54-31-9 Furosemide-D5 25 25 25 25
1,1,2,2,3,3,4,4,4-nonafluorobutane- .
L-sulfonic acid 375-73-5 Furosemide-D5 50 50 50 100
cycloheximide 66-81-9 Nicosulfuron-D6 25 50 50 50
Climbazole 38083-17-9 Climbazole-D4 5 5 5 5
2-hydroxybenzothiazool 934-34-9 Benzotriazole-D4 5 10 10 10
2-methylthiobenzothiazool 615-22-5 Benzotriazole-D4 50 50 50 100
Nicosulfuron 111991-09-4 Nicosulfuron-D6 5 5 5 5
Pentoxyfylline 6493-05-6 Pentoxifylline-D6 5 5 5 5
Benzotriazole 95-14-7 Benzotriazole-D4 10 25 25 25
2,4-dinitrofenol 51-28-5 2,4-dinitrofenol-D3 10 10 10 10
Terbutylazine 5915-41-3 Terbutylazine-D5 5 5 5 5
Metoprolol 37350-58-6 Metoprolol-D7 5 5 5 5
2,4,5-trimethylaniline 137-17-7 Tetraglyme-D6 5 5 5 5
Carbendazim 10605-21-7 Carbendazim-D4 5 5 5 5
Triethyl phosphate 78-40-0 Triethyl phosphate-D15 10 50 50 50
Thiacloprid 111988-49-9 Thiacloprid-D4 5 5 5 5
Phoxim 14816-18-3 Phoxim-D5 5 10 10 10
Drometrizole 2440-22-4 Drometrizole-D3 50 50 50 50
Metolachloor ESA (CGA 354743) 171118-09-5 Metolachlor ESA-D6 25 25 25 25
Warfarin 81-81-2 Warfarin-D6 5 5 5 5
Tetraglyme 143-24-8 Tetraglyme-D6 5 5 5 5
Metobromuron 3060-89-7 Metobromuron-D6 10 25 25 25
Bromacil 314-40-9 Furosemide-D5 10 10 10 10
Saccharine 81-07-2 Saccharine-D4 50 50 50 50
Metazachlor 67129-08-2 Metazachlor-D6 5 5 5 5
4-chloor-2-methylfenoxyazijnzuur )
(MCPA) 94-74-6 Furosemide-D5 25 25 25 25
Oxybenzone 604-75-1 Oxybenzone-D3 10 10 10 10
Methamphetamine 537-46-2 Methamphetamine-D5 5 5 5 5
Benzoylecgonine 519-09-5 Benzoylecgonine-D3 5 5 5 5
MDMA 42542-10-9 MDMA-D5 5 5 5 5



https://www.sigmaaldrich.com/NL/en/search/2440-22-4?focus=products&page=1&perPage=30&sort=relevance&term=2440-22-4&type=cas_number

BTO 2024.010 | April 2024 Zeer Zorgwekkende Stoffen (deel 1) — clustering, bemonstering en toxiciteit

74

Oxazepam 604-75-1 Oxazepam-D5 5
Methadon 76-99-3 Methadon-D9 5
V. Instellingen UHPLC en MS

Tabel 8: UHPLC instellingen

UHPLC pomp

Shimadzu Nexera X2 LC-30AD

Monsterwisselaar en temperatuur

Shimadzu Nexera X2 SIL-30AC, 15 °C

Analytische kolom

Phenomenex Luna Omega Polar C18 2.1x100 1,6 um

Guardkolom

Phenomenex securityGuard ultra cartridges C18

Kolomthermostaat en temperatuur

Shimadzu Nexera X2 CTO-20AC, 20 °C

Autosampler spoelvloeistof R3

70% acetonitril, 15% methanol, 15% ultrapuur water

Autosampler spoelvloeistof R1 en R2

Wordt niet gebruikt

Autosampler spoelvloeistof RO

Ultrapuur water

Injectievolume 100 ul
Maximale pompdruk 1000 bar
Tabel 9: UHPLC gradiént
stap | udin 1A% | 2-A% Flow
minuten (ml/min)
0 0 96 4 0.3
1 1 96 4 0.3
2 13 50 50 0.3
3 14 0 100 0.3
4 18 0 100 0.3
5 18.5 96 4 0.3
6 20 96 4 0.3
Mobiele fase 1-A: Ultrapuur water + 0,10% mierenzuur. Mobiele fase 2-A Acetonitril + 0,10% mierenzuur.
Tabel 10: Instellingen massaspectrometer
Massaspectrometer SCIEX Triple Quad 6500+
Scanmethode MRM
LC/MS interface H-ESI

lonisatie mode

Posi

tief en Negatief

Target cycle time

0,4s
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(across SMRM experiments)

Curtain gas (CUR)

30

Colission gas (CAD)

8

lonSpray Voltage (IS)

Positief: +4000 v
Negatief: -4500 v

Temperature (TEM) 400

lon Source gas 1 (GS1) 40

lon source gas 2 (GS2) 40

Entrance potential (EP)* Positie.f: +10
Negatief: -10

Settling time 5ms

Pause between mass ranges 5ms

Min. dwell tijd 3ms

Max. dwell tijd 50 ms

Divert valve 2 =18 minuut

Resolutie Q1 Unit

Resolutie Q3 Unit

Horizontale probe positie 3,0 mm

Verticale probe positie 5,0 mm
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